 | Пусть p ∈ (2, + ∞], n ≥ 1 и ∆ = (∆1, ..., ∆n), ∆k> 0, 1 ≤ k ≤ n. Доказано, что для функций γ (t) ∈ Lp (Rn) со спектром на расстоянии не менее ∆k от каждой из n координатных гиперплоскостей, 1 ≤ k ≤ n соответственно, справедливо неравенство
|| ∫Etγ (τ) dτ || L∞ (Rn) ≤ Cn (q) [∏n (k = 1) 1 / ∆ (1 / q) k] ∥γ (τ) ∥Lp (Rn), где t = (t1, ..., tn) ∈ Rn, Et = {τ | τ = (τ1,..., τn) ∈ Rn,
τj ∈ [0, tj], если tj ≥ 0, и τj ∈ [tj, 0], если tj <0, 1 ≤ j ≤ n}, и константа C (q)> 0, 1 / p + 1 / q = 1 не зависит от γ (τ) и ∆. |