Март, № 2

Физико-математические науки

2011

УДК 539.87

ВЛАДИМИР АЛЕКСАНДРОВИЧ ПЕТРУНИН

кандидат физико-математических наук, доцент кафедры физики естественнонаучного факультета, Сибирский государственный индустриальный университет (г. Новокузнецк) gromov@physics.sibsiu.ru

СЕРГЕЙ АНДРЕЕВИЧ НЕВСКИЙ

аспирант кафедры физики естественнонаучного факультета, Сибирский государственный индустриальный университет (г. Новокузнецк)

nevskiy_sa@physics.sibsiu.ru

СЕРГЕЙ ВАЛЕРЬЕВИЧ КОНОВАЛОВ

кандидат технических наук, доцент кафедры физики естественнонаучного факультета, Сибирский государственный индустриальный университет (г. Новокузнецк) konovalov@physics.sibsiu.ru

ВИКТОР ЕВГЕНЬЕВИЧ ГРОМОВ

доктор физико-математических наук, профессор, заведующий кафедрой физики естественнонаучного факультета, Сибирский государственный индустриальный университет (г. Новокузнецк)

gromov@physics.sibsiu.ru

О ВЛИЯНИИ СЛАБЫХ ЭЛЕКТРИЧЕСКИХ ВОЗДЕЙСТВИЙ НА РЕЛАКСАЦИЮ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ В АЛЮМИНИИ

Выявлено ускоряющее действие слабых электрических потенциалов на релаксацию механических напряжений технически чистого алюминия A 85. Установлено, что активационный объем при наложении потенциалов от -1,5 до 1,5 В уменьшается вне зависимости от его знака. Сделано предположение о связи установленных изменений с изменениями поверхностной энергии и дислокационной структуры.

Ключевые слова: алюминий, релаксация напряжений, электрический потенциал, активационный объем

Одним из основных требований, предъявляемым к деталям ответственного назначения, является стабильность их размеров и формы в течение всего срока эксплуатации. Причина отклонений от задаваемых параметров - пластическая деформация, которая в конечном счете приводит к разрушению детали. Распространенным видом пластической деформации в технике является релаксация напряжений, которая, с одной стороны, может привести к ослаблению механических соединений, с другой стороны, релаксацию напряжений нужно стимулировать для снятия остаточных напряжений. Поэтому необходима разработка способов управления этим видом пластической деформации с помощью внешних энергетических воздействий, но для этого нужно знать характер и общую кинетику протекания пластической деформации в условиях данных воздействий.

Большие успехи достигнуты в изучении влияния внешних электрических воздействий, в частности импульсного токового [18] и воздействия электростатическими полями большой напряженности. Последнее хорошо изучено в твердых диэлектриках [6]. К настоящему времени установлено, что внешние электрические воздействия существенно меняют дислокационную субструктуру материала. Так, в [19] показано, что при воздействии электрических потенциалов степень самоорганизации дислокационной субструктуры в разрушенных при испытании на ползучесть образцах изменяется. Однако изменение дислокационной субструктуры в случае релаксации напряжений в условиях слабых электрических воздействий практически не изучалось.

Цель настоящей работы – провести анализ изменения дислокационной субструктуры в процессе релаксации механических напряжений алюминия при наложении электрического потенциала.

Исследования выполнены на цилиндрических образцах технически чистого алюминия A 85, диметром 22 мм и высотой 16 мм. Образцы были предварительно отожжены в течение двух часов при температуре 773 К для снятия внутренних напряжений. Для нагружения образцов (испытание на сжатие) использовалась деформационная машина с автоматической регистрацией усилий во времени. Процесс релаксации механических напряжений начинался после прекращения нагружения при $\sigma_0 = 57 \pm 0.5$ МПа и скорости деформиро-

© Петрунин В. А., Невский С. А., Коновалов С. В., Громов В. Е., 2011

вания 0,002 с⁻¹. Как и в [8], [9], на образец накладывался электрический потенциал с диапазоном изменения от -1,5 до +1,5 В.

Полученные в эксперименте релаксационные кривые аналогично [3], [19] использовались для определения основных характеристик релаксации механических напряжений. К этим характеристикам относятся активационный объем у и коэффициент чувствительности скорости пластической деформации к изменению внешнего напряжения $m = d \ln(-\dot{\sigma})/d \ln \sigma$. В качестве количественных характеристик влияния электрического потенциала ф использовались относительное изменение активационного объема $\zeta = (\gamma_{\varphi} - \gamma_0) / \gamma_0$ и коэффициента чувствительности скорости пластической деформации к изменению внешнего напряжения $\xi = (m_{\varphi} - m_0) / m_0$, где γ_{φ} и m_{φ} – значения соответствующих величин для ненулевого потенциала, а γ_0 , m_0 – для нулевого.

Из стандартных кривых σ (t) [1] определялись зависимости глубины релаксации $\Delta \sigma$ от времени (рис. 1). Видно, что при наложении потенциала релаксация напряжений ускоряется. При t ≈ 400 с процесс релаксации замедляется и глубина релаксации напряжений принимает следующие значения:

 $\Delta \sigma_{1 \text{ м}}(400 \text{ c}) \approx 5,1 \text{ МПа для } \phi = 0 \text{ B};$

 $\Delta \sigma_2 (400 \text{ c}) \approx 8 \text{ МПа для } \phi = -1 \text{ B};$

 $\Delta \sigma_3 (400 \text{ c}) \approx 9,5 \text{ МПа для } \phi = 1 \text{ B}.$

Полный временной интервал измерений равен t = 0 с ÷ 1500 с, и для этого момента времени соответствующие значения равны

 $\Delta \sigma_1 (1500 \text{ c}) \approx 11 \text{ MHz};$

 $\Delta \sigma_2$ (1500 c) \approx 12,5 MIIa;

 $\Delta \sigma_3 (1500 \text{ c}) \approx 15 \text{ MII}a.$

В целом глубина релаксации не превышает 15 МПа. На всем временном интервале измерений для $\varphi = 1$ В $\delta = [\Delta \sigma_3 - \Delta \sigma_1] \approx 4$ МПа, причем и этот эксперимент, и последующие (для активационных параметров) обнаруживают независимость результатов измерений от знака приложенного потенциала.

Результаты вычисления активационного объема и коэффициента чувствительности скорости пластической деформации к изменению внешнего напряжения при различных значениях потенциала представлены в таблице.

Изменения γ и *m* не зависят от знака электрического потенциала и отражают общую тенденцию их снижения с ростом потенциала φ .

Полученные результаты, по-видимому, могут быть интерпретированы с помощью представлений о поверхностной энергии и коэффициенте поверхностного натяжения алюминия [10]. Рост поверхностной энергии под воздействием потенциала может быть связан, на наш взгляд, не только с образованием двойного электрического слоя [4], но и с движением дислокаций в поверхностном слое образца в процессе релаксации напряжений. То, что важным для понимания физики явления должна быть картина эволюции движущихся дислокаций, следует из факта ускорения

Изменение параметров у и *m* под воздействием электрического потенциала

φ, Β	-1	-0,5	0	0,5	1
γ, 10 ⁻²⁷ м ³	1,35	1,29	1,7	1,41	1,27
m	10,7	13,0	14,4	11,3	10,6

Примечание. у – активационный объем, m – коэффициент чувствительности скорости пластической деформации к изменению внешнего напряжения.

Рис. 1. Изменение глубины релаксации от времени испытания в обычных условиях (кривая 1), при потенциале поверхности -1 В (кривая 2) и +1 В (кривая 3)

релаксации напряжений. Ограничимся рассмотрением поведения дислокаций в условиях одноосной модели пластической деформации, предложенной в [5]. Используем традиционный подход к описанию пластической деформации [5], основанный на синтезе идей физической [2] и математической теории пластичности [7], [17]. Можно предположить, что активационный объем у уменьшается с ростом потенциала потому, что подвижные дислокации закрепляются в процессе релаксации напряжений, а на закрепленные дислокации электрический потенциал не влияет через механизм роста поверхностной энергии. Воспользуемся синергетическим подходом к роли подвижных дислокаций, вихревому характеру пластической деформации (уровень зерна) и структурным уровням пластичности [12], [13].

Поскольку пластическая деформация алюминия осуществляется при относительно низких температурах, не превышающих 0,5 T_m (T_m – температура плавления), она реализуется за счет дислокационного скольжения, причем дислокации преодолевают препятствия термофлуктуационным образом. Из выражения для активационного объема $\gamma = bld$ [15], [16], где b – вектор Бюргерса, l – длина дислокационной петли, d – поперечный размер локального стопора, полагая $d \approx b$, получим выражение $l \approx \gamma/b^2$. Значение активационного объема для нулевого потенциала $\gamma(0) = 1,7 \cdot 10^{-27}$ м³, значение вектора Бюргерса

для алюминия b = 2,86 Å [16], откуда $1 \approx 21$ нм. Если роль центров закрепления играют дислокации «леса», то мы можем оценить по порядку величины соответствующую плотность дислокаций $\rho \approx l^2 \approx 2.3 \cdot 10^{15} \text{ м}^{-2}$. Столь высокие значения плотности дислокаций могут свидетельствовать о наличии развитой сетчатой дислокационной структуры [14]. Высокая плотность закрепленных дислокаций и незначительное число подвижных дислокаций приводят к тому, что при наложении потенциала из-за наличия более высокой поверхностной энергии подвижные дислокации при релаксации закрепляются медленнее, чем при нулевом потенциале. А поскольку активационный объем определяется числом закрепленных дислокаций, при ненулевом потенциале он меньше, чем при нулевом (в согласии с рис. 2). Коэффициент т ведет себя аналогичным образом, так как с ростом потенциала снижается работа по преодолению дислокацией препятствий [19].

Рис. 2. Зависимость относительного изменения активационного объема от электрического потенциала

Воспользуемся физико-математической моделью одноосного растяжения (сжатия) [5] применительно к нашей задаче. Для жесткопластической среды модель включает следующие уравнения [5]:

$$\frac{d\rho_s}{dt} = \rho_g v_{gs} - \rho_s v_{sg} \,, \tag{1a}$$

$$v_{sg} = v_0 \exp\left(-\frac{U - \sigma\gamma/n}{kT}\right), \qquad (16)$$

$$\dot{\varepsilon} = \rho_s b \upsilon, \qquad (1B)$$

$$\dot{\varepsilon} = \dot{\varepsilon}_0 \exp\left(-\frac{U - \gamma \sigma / n}{kT}\right), \qquad (1r)$$

где ρ_s , ρ_g – плотности закрепленных и подвижных дислокаций, v_{gs} – частота превращений подвижных дислокаций в закрепленные, v_{sg} – частота превращений закрепленных дислокаций в подвижные (преодоление барьеров и т. п.), t – время, v_0 – предэкспоненциальный множитель, U – энергия активации процессов преодоления барьеров (средняя), σ – внешние (внутренние) напряжения, k – постоянная Больцмана, T – термодинамическая температура, γ – активационный объем, n – фактор Тейлора для поликристалла (для хаотической разориентировки зерен n = 2,8 ÷ 3,1), b – усредненный по системам скольжения вектор Бюргерса, v – средняя скорость подвижных дислокаций, ε – пластическая деформация.

Уравнение (1а) является уравнением «баланса» подвижных и закрепленных дислокаций, уравнение (1б) – это уравнение для кинетической константы реакции исчезновения закрепленных дислокций в форме С. Аррениуса, уравнение (1в) – известное в физике пластической деформации [16] уравнение Орована, уравнение (1г) представляет собой активационный закон типа С. Аррениуса для пластической деформации.

Подставляя в (1г) энергию активации $U = \beta G b^3$, где β – коэффициент, принимающий значения от 0,38 до 0,45 для разных металлов, активационный объем $\gamma = b^2 / \sqrt{\rho_s}$, $v_0 = v_D b \sqrt{\rho_s}$, частоту Дебая $v_D = 10^{12} \text{ c}^{-1}$ и предэкспоненциальный множитель $\dot{\varepsilon} = \dot{\varepsilon} * b \sqrt{\rho_s}$, $\dot{\varepsilon} * \equiv v_D$, получаем решение уравнений для одноосного сжатия. Оно имеет вид формулы для напряжения течения для случая $\dot{\varepsilon} = \text{const.}$

$$\sigma = \beta nGb \left(1 + \frac{kT}{\beta Gb^3} \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon} \cdot b\sqrt{\rho_s}} \right) \sqrt{\rho_s} , \qquad (2)$$

где G – модуль сдвига (для алюминия 27 ГПа [13]).

В соответствии с общепринятыми представлениями, первое слагаемое в (2), получающееся после раскрытия скобок, является атермической компонентой напряжений, а второе - термической компонентой. Формулу (2) можно применить к оценкам изменения плотности дислокаций ρ_s , добавив поправку на внешний потенциал и поверхностную энергию к начальным напряжениям релаксации. Из формулы (1г) следует, что рост внутренних напряжений, обусловленных внешним потенциалом, ведет к снижению скорости деформации є, что в соответствии с формулой (2) приводит к увеличению начального напряжения течения материала. Рост напряжения течения, согласно рис. 1, выражается в увеличении глубины релаксации Δσ для потенциала $\phi = 1$ В. Качественно зависимость $\sigma(\rho_s) \sim \sqrt{\rho_s}$ от плотности закрепленных дислокаций в начальный момент релаксации справедлива и для вклада поверхностной энергии в напряжения. Изменение поверхностной энергии под воздействием потенциала, в свою очередь, связано с подвижными дислокациями.

Таким образом, установлен эффект влияния электрических потенциалов на релаксацию механических напряжений технически чистого алюминия А 85. Выдвинуто предположение о том, что увеличение глубины релаксации обусловлено изменением поверхностной энергии и дислокационной структурой.

Работа выполнена при финансовой поддержке ФШП «Научные и научно-педагогические кадры инновационной России на 2009-2013 гг.» (гос. контракт № П411).

СПИСОК ЛИТЕРАТУРЫ

- Борзыка А. М., Гецов Л. Б. Релаксация напряжений в металлах и сплавах. М.: Металлургия, 1978. 256 с. В ладимиров В. И. Физическая теория пластичности и прочности. Ч. 2. Точечные дефекты. Упрочнение и воз-
- 2. врат. Л.: ЛПЙ, 1975. 152 с.
- 3. Гайдученя В. Ф., Калмыков Э. Б., Мишакин В. В. и др. Количественные параметры быстрой релаксации напряжений в гранулированном высокопрочном алюминиевом сплаве // ФММ. 1988. Т. 65. Вып. 6. C. 1186–1190.
- 4
- Гохштейн А. Я. Поверхностное натяжение твердых тел и адсорбция. М.: Наука, 1976. 400 с. Грешнов В. М., Пятаева И. В., Сидоров В. Е. Физико-математическая теория пластичности и ползучести металлов // Вестник УГАТУ. 2007. Т. 9. № 6. С. 143–152. 5.
- 3 у е в Л. Б. Физика электропластичности щелочно-галоидных кристаллов. Новосибирск: Наука, 1990. 120 с. 6
- 7.
- Ишлинский А. Ю., Ивлев Д. Д. Математическая теория пластичности. М.: Физматлит, 2001. 704 с. Коновалов С. В., Данилов В. И., Зуев Л. Б. и др. Овлиянии электрического потенциала на ско-рость ползучести алюминия // ФТТ. 2007. Т. 49. № 8. С. 1389–1391. Коновалов С. В., Филипьев Р. А., Котова Н. В. и др. Влияние слабых энергетических воздейст-8.
- 9. вий на ползучесть металлов // Известия вузов. Черная металлургия. 2008. № 12. С. 38-40.
- Кунин Л. Л. Поверхностные явления в металлах. М.: ГНТИЛ ЧЦ, 1955. 304 с.
 Панин В. Е., Лихачев В. А., Гриняев Ю. В. Структурные уровни деформации твердых тел. Новосибирск: Наука, 1985. 229 с.
- Петрунин В. А., Соснин О. В., Коновалов С. В. и др. Моделирование процессов электростиму-лированного воздействия на металлы // Известия вузов. Черная металлургия. 2004. № 6. С. 30–34. 12.
- 13. Рыбин В. В. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224 с.
- Фридель Ж. Дислокации: Пер. с фр. М.: Мир, 1967. 643 с.
 Хоникомб Р. Пластическая деформация металлов: Пер. с англ. М.: Мир, 1972. 408 с.
- 16.
- III т р е м е л ь М. А. Прочность сплавов. Ч. 1. Дефекты решетки. М.: МИСИС, 1999. 384 с. Book of the international seminar articles: electromagnetic field effect on the structure and characteristics of materials / Ed.17. Yu. Baranov, V. Gromov, G. Tang. Novokuznetsk: NPC, 2008. 380 p.
- 18
- Do t s e n k o V. I. Stress relaxation in crystals // Physica Status Solidi (b). 1979. Vol. 93. \mathbb{N} 1. P. 11–43. Gromov V. E., Ivanov Yu. F., Stolboushkina O. A., Konovalov S. V. Dislocation substructure evolution on Al creep under the action of the weak electrical potential // Material Science and Engineering A. 2010. 19 Vol. 527. P. 858-861.