Декабрь, № 8 УДК 519.6, 539.2 Физико-математические науки

ЮРИЙ ВАСИЛЬЕВИЧ ЗАИКА

доктор физико-математических наук, профессор, заведующий лабораторией Института прикладных математических исследований, Карельский научный центр РАН zaika@krc.karelia.ru

ЕКАТЕРИНА КОНСТАНТИНОВНА КОСТИКОВА научный сотрудник Института прикладных математических исследований, Карельский научный центр РАН fedorova@krc.karelia.ru

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ МОДЕЛИ ТЕРМОДЕСОРБЦИИ ВОДОРОДА

Рассматривается дегазация пластины, насыщенной водородом. Эксперимент проводится методом термодесорбционной спектрометрии. В краевой задаче с нелинейными граничными условиями учтены основные физико-химические процессы: диффузия и десорбция. Представлены методика оценки параметров модели по измерениям и результаты численного моделирования.

Ключевые слова: водородопроницаемость, нелинейные краевые задачи, параметрическая идентификация

ПОСТАНОВКА ЗАДАЧИ

Водород рассматривается как один из перспективных экологически чистых энергоносителей. Кроме того, безопасность систем транспортировки и переработки углеводородного сырья во многом определяется уровнем защиты конструкционных материалов от водородной коррозии. Экспериментальный метод термодесорбционной спектрометрии (ТДС) является одним из основных при исследовании взаимодействия водорода с твердым телом [2], [3], [5]. Пластина толщины ℓ из металла или сплава, нагретая до температуры $T = \overline{T}$, находится в камере с газообразным водородом под давлением \bar{p} . После насыщения растворенным атомарным водородом образец быстро охлаждается (отключается ток нагрева), камера вакуумируется и в условиях медленного нагрева с помощью масс-спектрометра определяется десорбционный поток. По этой информации судят о характеристиках взаимодействия водорода с материалом.

Рассмотрим симметричную по постановке эксперимента нелинейную краевую задачу ТДСдегазации:

$$\frac{\partial c}{\partial t} = D(T) \frac{\partial^2 c}{\partial x^2}, \ t \in (0, t_*), \ x \in (0, \ell),$$
(1)

$$c(0,x) = \varphi(x) = \varphi(\ell - x), \ x \in [0,\ell],$$
 (2)

$$D(T)c_{x}(t,0) = b(T)c_{0}^{2}(t), \ t \in [0,t_{*}],$$
(3)

$$D(T)c_x(t,\ell) = -b(T)c_\ell^2(t), \ t \in [0,t_*].$$

Здесь c(t, x) – концентрация атомарного водорода (H), растворенного в пластине, $c_0(t) \equiv c(t, 0)$, $c_\ell(t) \equiv c(t, \ell), c_0(t) = c_\ell(t); t_*$ – время дегазации; D, b – коэффициенты диффузии и десорбции; $J(t) = b(T)c_{0,\ell}^2(t)$ – плотность десорбционного потока (торцами пластины пренебрегаем). Квадратичность десорбции связана с тем, что водород диффундирует в металле в атомарном

© Заика Ю. В., Костикова Е. К., 2011

состоянии, а покидает поверхность (при x = 0 и $x = \ell$) в молекулярной форме. Коэффициент диффузии *D* и коэффициент десорбции (эффективной рекомбинации) *b* зависят от температуры *T*. Как правило, в «рабочем диапазоне» с достаточной степенью приближения выполняется закон Аррениуса: $D(t) = D_0 \exp\{-E_D/[RT]\}, b(T) = b_0 \exp\{-E_b/[RT]\}, D_0, E_D, b_D, E_D, R = \text{const}(E_D, E_D - 9)$ нергии активации, R = 8,31441 Дж/[моль·K] - 9)ниверсальная газовая постоянная). Нагрев обычно линейный: $T(t) = T_0 + vt, v > 0$. Сокращенно $D(t) \equiv D(T(t)), b(t) \equiv b(T(t)).$

Что касается начальных данных $\varphi(x)$, то в силу непродолжительности подготовительного этапа (охлаждение и вакуумирование) начальное распределение обычно считают практически равномерным: $\varphi(x) = \bar{c} = \text{const.}$ Здесь $\bar{c} =$ $= \bar{c}(\bar{p}, \bar{T})$ – равновесная концентрация. Несогласованность начальных и граничных условий при этом непринципиальна, поскольку будем использовать лишь интегральные соотношения (решение задачи (1)–(3) понимается как обобщенное). Для тонких мембран следует учесть «начальный прогиб» концентрации по краям. Ограничимся параболической аппроксимацией $\varphi(x) = \bar{c} - A_0 [x - \ell_0]^2, \ell_0 = \ell/2, A_0 > 0.$

Цель работы состоит в разработке вычислительного алгоритма для определения по плотности потока термодесорбции $J(t), t \in [0, t_*]$ $(J(t) \approx 0, t \ge t_*)$ параметров b_0, E_b, D_0, E_p , характеризующих водородопроницаемость материала.

Трудности решения обратных задач известны [9], [10]. В частности, разработаны градиентные алгоритмы минимизации в пространстве параметров среднеквадратичной невязки экспериментальных и модельных кривых [1]. Но на каждой итерации в общем случае приходится численно решать краевые задачи при текущих приближениях параметров. К тому же обычно сходимость локальная. Учет специфики метода ТДС позволил разработать алгоритм идентификации, в котором основная вычислительная нагрузка связана с квадратурными формулами, а не решением краевых задач.

Для тестирования алгоритма решения обратной задачи сначала численно генерировались модельные кривые, порождающие параметры которых затем «забывались». Из-за большого разброса порядков величин при моделировании J(t) проводилось масштабирование: $x = \ell z$, z = [0,1], $u = c/\bar{c}$, $u_t = Du_{zz}$, $Du_z|_{0,1} = \pm bu_{0,1}^2$, $D = D/\ell^2$, $b = b\bar{c}/\ell$, $u(0, z) = 1 - A_0(z - 0,5)^2$, $A_0 = A_0\ell^2/\bar{c}$. Здесь за преобразованными параметрами модели оставляем прежние обозначения D, b, A_0 . В вычислительных экспериментах ориентировались на данные по вольфраму, являющемуся одним из конструкционных материалов в реакторах [8]: $\bar{c} = 5,084 \times 10^{16}$ 1/см³ (K), ($\bar{T} = 1300$ K), $T_0 = 300$ K, $\dot{T} = 2$ K/c, $t_* = 500$ c, $\ell = 0,1$ см, $b_0 = 6 \times 10^{-12}$ см⁴/с; $E_b = 39,559$ кДж/моль.

ПАРАБОЛИЧЕСКОЕ ПРИБЛИЖЕНИЕ

Сходимость в нелинейных обратных задачах параметрической идентификации, как правило, локальная. В рассматриваемом ТДС-эксперименте распределение c(t, x) имеет «куполообразный» характер. Поэтому целесообразно в качественном плане за первое приближение взять параболическую аппроксимацию

$$c(t,x) \approx \tilde{c}(t,x) = B(t) - A(t)(x - \ell_0)^2,$$

$$2\ell_0 = \ell, \ A(0) = A_0, \ B(0) = \bar{c}.$$

Считаем известной равновесную растворимость $\bar{c} = \bar{c}(\bar{p},\bar{T}) \sim \sqrt{\bar{p}}$, которая в условиях эксперимента пропорциональна корню из давления насыщения. Функция B(t) > 0 аппроксимирует срединную концентрацию $c(t, \ell_0), A(t) > 0, t > 0$. Поскольку к моменту t_* произошла дегазация образца $(c(t, x) \approx 0, t \ge t_*)$, определим константу A_0 в начальных данных $\varphi(x) = \bar{c} - A_0 [x - \ell_0]^2$ из материального баланса

$$S_* = \int_0^{t_*} J(\tau) \, d\tau = \int_0^{\ell_0} \{ \bar{c} - A_0 [x - \ell_0]^2 \} \, dx = \bar{c} \ell_0 - \frac{A_0 \ell_0^3}{3}.$$
(4)

Отсюда $A_0 = 3(\bar{c}\ell_0 - S_*)/\ell_0^3$. Величина S_* равна половине количества десорбировавшегося водорода (в атомах), отнесенного к см² поверхности (x = 0 или $x = \ell$ неважно в силу симметрии). Условия согласования $Dc_x|_{0,\ell} = \pm bc_{0,\ell}^2$ при t = 0 начальных данных и граничных условий дает зависимость $D_0/b_0 = f_0(E_b - E_D)$:

$$D(0)A_0\ell = b(0)[\bar{c} - A_0\ell_0^2]^2 \Rightarrow \frac{D_0}{b_0}A_0\ell = \exp\left\{\frac{E_D - E_b}{RT_0}\right\}[\bar{c} - A_0\ell_0^2]^2.$$
(5)

Перейдем к конкретизации функций A(t), B(t) в аппроксимации $\tilde{c}(t, x)$. Из условия баланса выразим B(t) > 0 и подставим в $\tilde{c}(t, x)$:

$$\begin{split} &\int_{0}^{\ell_{0}} \varphi(x) \, dx - S(t) = \int_{0}^{\ell_{0}} \tilde{c}(t,x) \, dx \Rightarrow \\ &\bar{c}\ell_{0} - A_{0}\ell_{0}^{3}/3 - S(t) = B(t)\ell_{0} - A(t)\ell_{0}^{3}/3, \\ &B(t) = A(t)\ell_{0}^{2}/3 + \bar{c} - A_{0}\ell_{0}^{2}/3 - S(t)/\ell_{0}, \\ &\Rightarrow \tilde{c}(t,x) = Q(t)\ell^{-1} - A(t)[x^{2} - \ell x + \ell^{2}/6], \\ &S(t) \equiv \int_{0}^{t} J(\tau) \, d\tau, \quad Q(t) \equiv 2\int_{t}^{t_{*}} J(\tau) \, d\tau. \end{split}$$

Чтобы найти оставшийся функциональный параметр A(t), подставим выражение для $\tilde{c}(t, x)$ в граничное условие $D(T)\tilde{c}_x(t,0) = b(T)\tilde{c}_0^2(t)$. Это соотношение позволяет выразить A(t) через коэффициенты модели D, b и известную по экспериментальным данным Q(t). Оба корня квадратного уравнения относительно A(t) положительные, выбираем меньший из них (по физическому смыслу $c_0(t) \ge 0$). Из условия $\sqrt{J} = \tilde{c}_0 \sqrt{b}$ получаем соотношение для оценки D_0, E_D, b_0, E_b :

$$\left| \frac{J(t)}{b(T)} = \frac{3D(T)}{\ell b(T)} \right| \left| \sqrt{1 + Q(t) \frac{2b(T)}{3D(T)} - 1} \right|, T = T(t), t \in [0, t_*].(6)$$

Поскольку J(t) соответствует модели (1)–(3), а на предварительном этапе оценки *b*, *D* используется параболическое приближение, то это равенство является приближенным.

График J(t) имеет характер всплеска с последующим затуханием, причем на начальном и конечном этапах измерения менее точны. Поэтому ограничимся $t \in [t_1, t_2] \subset (0, t_*)$, нормируем уравнение на $I_{max} = \sqrt{J_{max}} (I(t) \equiv \sqrt{J(t)})$ и выделим безразмерные переменные:

$$I(t)I_{\max}^{-1} = \left(\sqrt{1 + 2Q(t)t_*^{-1}J_{\max}^{-1}X} - 1\right)Y,$$

$$X \equiv \frac{t_*J_{\max}b(T)}{3D(T)}, \quad Y \equiv \frac{3D(T)}{I_{\max}\ell\sqrt{b(T)}}.$$
(7)

Формально допуская E < 0, удобно считать новые переменные $X(t) \equiv X(T(t)), Y(t) \equiv Y(T(t)),$ «аррениусовскими»:

$$X_0 \equiv \frac{t_* J_{\max} b_0}{3D_0}, \quad Y_0 \equiv \frac{3D_0}{I_{\max} \ell \sqrt{b_0}}.$$

$$E_X \equiv E_b - E_D, \quad E_Y \equiv E_D - E_b/2.$$

Обозначая $q \equiv 2Qt_*^{-1}J_{\text{max}}^{-1}$, получаем уравнение $f(t; X_0, E_X, Y_0, E_Y) \equiv I(t)I_{\text{max}}^{-1}$ —

$$-\left(\sqrt{1+q(t)X}-1\right)Y = 0.$$
 (8)

Преобразуем величину *Y* с учетом связи $D_0/b_0 = f_0(E_X)$ (см. (5)):

$$Y = Y_0 \exp\{-E_Y / [RT(t)]\} =$$

$$= Z_0 \exp\{-E_X / [RT_0]\} \exp\{-E_Y / [RT(t)]\},$$

$$Z_0 \equiv \frac{3[\bar{c} - A_0 \ell_0^2]^2 \sqrt{b_0}}{A_0 \ell^2 I_{\max}}, \quad Z_0 = Z_0(b_0) \leftrightarrow b_0.$$
(9)

Величина I_{max} зависит от входных данных $\{\varphi, D, b\}$. Запись $Z_0 = Z_0(b_0)$ означает, что значения \overline{c}, A_0 уже найдены, а функция J(t) при решении обратной задачи известна. Аналогично

$$X = X_0 \exp\left\{-\frac{E_X}{RT(t)}\right\} = \frac{t_* J_{\max} A_0 \ell}{3[\bar{c} - A_0 \ell_0^2]^2} \exp\left\{\frac{E_X}{RT_0}\right\} \exp\left\{\frac{-E_X}{RT(t)}\right\}.$$

Подставляя выражения X, Y в уравнение (8), получаем зависимость $f = f(t; Z_0, E_x, E_y)$. Далее с учетом зашумленности реальных измерений и погрешности параболической аппроксимации следуем методу наименьших квадратов (МНК):

$$F(Z_0, E_X, E_Y) \equiv \int_{t_1}^{t_2} f^2(\tau) d\tau \to \min.$$

Производные функции *F* можно выписать явно (подсчет интеграла считаем элементарной операцией).

Перейдем к изложению результатов численного моделирования. Разностная схема решения задач термодесорбции изложена в [4]. График плотности потока водорода для указанных параметров представлен на рис. 1.

Рис. 1. ТДС-спектр. Влияние скорости нагрева

Для оценки значений D_0 , E_D , b_0 , E_b использовались МНК и метод моментов (ММ) применительно к уравнению (8) (f = 0), в которое подставлены: выражения X, Y согласно формулам (7); $D(t) = D_0 \exp\{-E_D/[RT]\}, b(T) = b_0 \exp\{-E_b/[RT]\}; T(t) = T_0 + vt$ выражение $D_0 = D_0(b_0, E_D, E_D)$ из соотношения (5). На рис. 2, 3 показано, что задача $||f||_{L_2} \rightarrow \min(L_2 = L_2[t_1, t_2], t_1 = 50 \text{ с}, t_2 = 450 \text{ с})$ хорошо обусловлена по каждому из коэффициентов D, b (один из них фиксировался равным «истинному» значению). При этом дополнительное соотношение (5) не учитывалось при построении поверхности на рис. 3, но для рис. 2 оно необходимо, иначе отсутствует экстремум в физически оправданном диапазоне.

Остановимся на уравнении $f(t; Z_0, E_X, E_y) = 0$, полученном после подстановки в (8) выражений X, Y, D_0 в соответствии с формулами (5), (7). «Истинные» значения: $Z_0^* = 0,119$, $E_X^* = 1,929$, $E_Y^* =$ = 17,849. Варьируем лишь один из параметров Z_0 , E_X, E_Y . Решение задачи $||f||_{L_2} \rightarrow \min$ по Z_0 дает относительную погрешность $\delta(Z_0) = |Z_0 - Z_0^*|/Z_0^*| =$ 0,52. Это приводит в соответствии с формулой (9) к $\delta(b_0) = 0,77$ и $\delta(D_0) = 0,17$ в силу (5).

Для задачи $||f||_{L_2} \rightarrow \min \operatorname{no} E_x$ имеем $\delta(E_x) =$ = 1,38 ($\delta(E_b) = 0,13$, $\delta(E_D) = 0,07$); $\delta(E_y) = 0,26$ ($\delta(E_b) = 0,23$, $\delta(E_D) = 0,25$) для $||f||_{L_2} \rightarrow \min \operatorname{no} E_y$. Обратимся к методу моментов. Обозначим

$$M_{i} = M_{i}(Z_{0}, E_{X}, E_{Y}) =$$
$$= \int_{t_{1}}^{t_{2}} \Psi_{i}(t) f(t; Z_{0}, E_{X}, E_{Y}) dt.$$

Ограничимся функциями $\Psi_1(t) = t/t_*, \Psi_2(t) = t^2/t_*^2, \Psi_3(t) = 10^{-1}t_*/t, t \in [t_1, t_2], t_1 = 50, t_2 = 450 (t_* = 500).$ Использование ММ (решение системы $M_i = 0$) дает в среднем такую же точность, как и МНК. Применение параболического приближения позволило решить обратную задачу для исходной распределенной модели с погрешностями, указанными в табл. 1. Подчеркнем, что параболическое приближение является грубым для исходной краевой задачи (1)–(3). Его задача – «попасть в порядки» оцениваемых коэффициентов *D*, *b*. Значение предэкспоненты b_0 определянот

Таблица 1

абсолютным значением (коэффициент при квадрате концентрации). Можно было бы перейти к двойной точности вычислений на всех этапах моделирования, но это излишне при зашумленных входных данных обратной задачи.

	1	1	
Параметр	Исходные данные	Полученные значения	Относительная погрешность
\boldsymbol{b}_0	6×10^{-12}	$1,514 \times 10^{-11}$	152,3 %
E _b	39,559	45,100	19,8 %
<i>D</i> ₀	$4,1 \times 10^{-3}$	$2,880 \times 10^{-3}$	29,7 %
	37,629	36,745	7,1 %

Оценки параболического приближения

Начальные приближения E_D , E_b в диапазоне нескольких десятков кДж/моль можно указать из физико-химических соображений. Приближение $b_0(Z_0)$ берем в силу $J(0) = b(T_0)c_{0,\ell}^2(0) =$ $= b_0 \exp\{-E_b/[RT_0]\}[\bar{c} - A_0\ell_0^2]^2$. Только как начальное приближение, поскольку J(0) обычно известно с большой погрешностью.

Замечание. Задача усложняется, когда равновесную концентрацию \bar{c} также приходится считать неизвестной. Тогда задача четырехмерная в соответствии с (8). По оценкам X_0 , E_x , Y_0 , E_y значения \bar{c} , A_0 находятся из уравнений (4), (5).

Далее переходим к локальному уточнению оценок D_0 , E_p , b_0 , E_b в соответствии с исходной моделью (1)–(3). Искомых независимых переменных 3 в силу $D_0/b_0 = f_0(E_b - E_b)$.

ПРИМЕНЕНИЕ ФУНКЦИИ ГРИНА

Поскольку зависимость J(t) известна по результатам эксперимента, то решение задачи

$$c_t = D(T)c_{xx}, \ c(0,x) = \bar{c} - A_0[x - \ell_0]^2,$$

$$Dc_x(t,0) = -Dc_x(t,\ell) = J(t)$$

удобно представить с помощью функции Грина [6]. Получаем следующее представление $c_0(t)$:

$$c_{0}(t) = \bar{c} - \frac{2}{\ell} \int_{0}^{t} J(\tau) d\tau - -A_{0}\ell \left[\frac{\ell}{12} + \frac{4}{\ell} \sum_{n=1}^{\infty} \frac{1}{\mu_{n}} \exp\{-\mu_{n}\gamma(t,0)\} \right] - -\frac{4}{\ell} \sum_{n=1}^{\infty} \int_{0}^{t} \exp\{-\mu_{n}\gamma(t,\tau)\} J(\tau) d\tau,$$
$$\gamma(t,\tau) \equiv \int_{\tau}^{t} D(s) ds, \ \mu_{n} \equiv \left(\frac{n\pi}{\ell_{0}}\right)^{2}.$$

Заменим в скобке [...] экспоненту на $[\exp\{-\mu_n\gamma(t,0)\}-1]+1$:

$$v_n(t) \equiv \frac{1 - \exp\{-\mu_n \gamma(t, 0)\}}{\mu_n}, \ [1 - \dots]/\mu_n$$
$$c_0(t) = \varphi(0) - \frac{2}{\ell} \int_0^t J(\tau) \, d\tau + 4A_0 \sum_{n=1}^\infty v_n(t) - \frac{4}{\ell} \sum_{n=1}^\infty J_n(t),$$

$$J_n(t) \equiv \int_0^t \exp\{-\mu_n \gamma(t,\tau)\} J(\tau) \ d\tau.$$

Соотношение $J = bc_{0,\ell}^2 \Rightarrow \sqrt{J} - \sqrt{b}c_0(t) = 0$ имеет форму семейства уравнений для параметров: Ф ($t; D_0, E_D, b_0, E_b$) = 0. При численной реализации ряды заменялись частичными суммами:

$$\Phi = \sqrt{J(t)} - \sqrt{b} \left[\varphi(0) - \frac{2}{\ell} \int_0^t J(\tau) \, d\tau + 4A_0 \sum_{n=1}^{N_1} \nu_n(t) - \frac{4}{\ell} \sum_{n=1}^{N_2} J_n(t) \right] = 0.$$
(10)

С использованием пакета Scilab численно решалась задача $\int_{t_1}^{t_2} \Phi^2 d\tau \rightarrow \min \, \text{при} \, N_1 = N_2 = 5.$ Уровень ошибок оценивания улучшился лишь на несколько процентов. Необходимы дополнительные соотношения.

СОПРЯЖЕННЫЕ УРАВНЕНИЯ

Следуя технике сопряженных уравнений [7], интегрированием по частям для достаточно гладкой функции $\psi(t, x)$ получим:

$$0 = \int_{0}^{t_{*}} \int_{0}^{\ell} \psi(t, x) [c_{t} - Dc_{xx}] dx d\tau =$$

$$= \int_{0}^{t_{*}} J(t) \psi(t, 0) dt + \int_{0}^{t_{*}} J(t) \psi(t, \ell) dt +$$

$$+ \int_{0}^{t_{*}} D(t) \sqrt{J(t)b^{-1}(t)} \psi_{x}(t, \ell) dt -$$

$$- \int_{0}^{t_{*}} D(t) \sqrt{J(t)b^{-1}(t)} \psi_{x}(t, 0) dt -$$

$$- \bar{c} \int_{0}^{\ell} \psi(0, x) dx + A_{0} \int_{0}^{\ell} (x - \ell_{0})^{2} \psi(0, x) dx.$$

Здесь опущен двойной интеграл, поскольку далее считаем функцию $\psi(t, x)$ подчиненной сопряженному уравнению $\partial \psi/\partial t = -D\partial^2 \psi/\partial x^2$. Кроме того, пренебрегаем интегралом от $\psi(t_*, x)c(t_*, x)$ по x с учетом $c(t_*, x) \approx 0$. Косвенно ограничиваемся не слишком быстро растущими по t функциями $\psi(t, x)$. Подчеркнем, что краевые условия не ставятся, «пробных» функций ψ бесконечно много. Простые варианты $\psi = 1, x$ приводят к уравнению материального баланса, которое уже использовалось для оценки константы A_0 . Выберем, например, $\psi(t, x) = \beta(t) \exp \sigma x$. При нормировке $\beta(t_*) = 1$ получаем

$$\psi(t,x) = \exp\{\sigma^2 \gamma(t_*,t)\}\exp\{\sigma x\}.$$

Перепишем соотношение (11) в обозначениях

$$\begin{split} X &\equiv \int_0^{t_*} J\beta \, dt \,, \ \ Y \equiv \int_0^{t_*} D\sqrt{Jb^{-1}} \beta \, dt \,, \ \ \kappa \equiv \frac{\exp \sigma\ell + 1}{\exp \sigma\ell - 1} \,: \\ F(\sigma) &= \kappa\sigma X + \sigma^2 Y + \\ +\beta(0)\sigma^{-2} \left\{ 2A_0 - \sigma^2(\bar{c} - A_0[\ell_0^2 - \ell\kappa\sigma^{-1}]) \right\} = 0. \end{split}$$

Таблица 2

Параметр σ целесообразно варьировать в пределах $\sigma \ell \sim 1$. В табл. 2 приведены значения параметров, полученные решением системы уравнений (12) для $\sigma = 1, 8, 10, 11$. Энергии активации восстанавливаются с большой точностью (их влияние на кинетику дегазации очень велико). Предэкспонента b_0 определяется хуже вследствие ее малого абсолютного значения. Погрешность включает в себя и погрешность решения прямой задачи численного моделирования J(t).

-		
Пименение	сопряженных	уравнений
	CONDAMENTIDIA	ypublicinn

Параметр	Исходные данные	Полученные значения	Относительная погрешность
\boldsymbol{b}_0	6×10^{-12}	$5,468 \times 10^{-12}$	8,7 %
E_{b}	39,559	39,559	0 %
D ₀	$4,1 \times 10^{-3}$	$4,104 \times 10^{-3}$	1,7 %
E	37,629	37,629	0 %

На рис. 4, 5 представлены поверхности $G = F^{2}(9) + F^{2}(11)$ при фиксированных $D = D^{*}$,

Рис. 4. Экстремум G(b)

 $b = b^*$. Из рис. 4 видно, что для b важно найти хорошее начальное приближение.

Уравнение F = 0 хорошо обусловлено по каждому из параметров модели. Для самого «трудноуловимого» параметра b₀ среди указанных значений $\sigma(\delta(b_0) \le 0,3\%)$ наименьшую погрешность дает $\sigma = 9$.

Таким образом, изложенные этапы алгоритма параметрической идентификации позволяют восстановить параметры модели с относительной погрешностью, которая с запасом «поглощается» точностью ТДС-эксперимента. В предлагаемой итерационной процедуре оценивания используется подсчет интегралов по времени, а не численное решение краевой задачи при текущих приближениях параметров. Входные данные *J(t)* используются под знаком интеграла, что обеспечивает определенную помехоустойчивость. Если мембрану нельзя считать тонкой (это зависит от материала и условий эксперимента), целесообразно взять $\varphi(x) = \bar{c} - A_0 [x - \ell_0]^{2k}$, k > 1.

Работа выполнена при поддержке РФФИ (грант 09-01-00439).

Рис. 5. Экстремум G(D)

СПИСОК ЛИТЕРАТУРЫ

- 1. Алифанов О. М., Артюхин Е. А., Румянцев С. В. Экстремальные методы решения некорректных задач. М.: Наука, 1988. 288 с.
- 2. Взаимодействие водорода с металлами / Под ред. А. П. Захарова. М.: Наука, 1987. 296 с.
- Водород в металлах: В 2 т.; пер. с англ. / Под ред. Г. Алефельда, В. Фёлькля. М.: Мир, 1981.
 Заика Ю. В., Костикова Е. К. Разностная схема для краевой задачи ТДС-дегазации с динамическими граничными условиями // Ученые записки Петрозаводского государственного университета. Сер. «Естественные и технические науки». 2009. № 7 (101). С. 65–70.
- 5. Кунин Л. Л., Головин А. И., Суровой Ю. И., Хохрин В. М. Проблемы дегазации металлов. М.: Наука, 1972. 324 c.
- 6. Мартинсон Л. К., Малов Ю. И. Дифференциальные уравнения математической физики. М.: МГТУ им. Н. Э. Баумана, 2002. 368 с.
- 7. Марчук Г. И. Сопряженные уравнения и анализ сложных систем. М.: Наука, 1992. 336 с.
- 8. Писарев А. А., Цветков И. В., Маренков Е. Д., Ярко С. С. Проницаемость водорода через металлы. М.: МИФЙ, 2008. 144 с.
- 9. Самарский А. А., Вабищевич П. Н. Численные методы решения обратных задач математической физики. М.: Едиториал УРСС, 2004. 480 c.
- 10. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.