Сентябрь, № 6

УДК 547.551+544.142.3+544.182.22

Физико-математические науки

ВЛАДИМИР ПЕТРОВИЧ АНДРЕЕВ доктор химических наук, профессор кафедры молекулярной биологии, биологической и органической химии эколого-биологического факультета, Петрозаводский государственный университет (Петрозаводск, Российская Федерация) andreev@psu.karelia.ru

ГИБРИДИЗАЦИЯ АТОМОВ АЗОТА В АНИЛИНАХ И ИХ МОЛЕКУЛЯРНЫХ КОМПЛЕКСАХ С V-АКЦЕПТОРАМИ*

На основе анализа данных Cambridge Structural Database относительно структуры анилинов и их молекулярных комплексов n,v-типа показано, что гибридизация атома азота в них зависит от электронных свойств заместителей в ароматическом кольце, силы кислоты Льюиса, пространственной доступности атома азота (прочности донорно-акцепторной связи) и агрегатного состояния соединений. Ключевые слова: гибридизация, координация, анилины, электронные и стерические факторы, рентгеноструктурный анализ

Согласно данным спектроскопии ЯМР ¹Н и рентгеноструктурного анализа (РСА), пространственное строение и состояние гибридизации $(sp^2 - sp^3)$ атома кислорода в молекулярных комплексах N-оксидов пиридинов и хинолинов с v-акцепторами зависит как от природы нуклеофила и акцептора, так и от агрегатного состояния исследуемых соединений [1], [2], [3]. В растворах вероятность $sp^2 \rightarrow sp^3$ перегибридизации в процессе образования аддукта возрастает с увеличением основности N-оксида, кислотности по Льюису акцептора и с уменьшением полярности растворителя. В кристаллическом же состоянии (в отсутствии растворителя) вследствие более плотной упаковки атомов становится очень важным соотношение внутри- и межмолекулярных взаимодействий между до-норноакцепторными компонентами комплексов.

Предполагая, что sp² \rightarrow sp³ перегибридизация атомов кислорода и азота (а возможно, и других гетероатомов) при комнатной температуре в зависимости от внешних условий является универсальным процессом, мы решили в дополнение к гетероароматическим N-оксидам проанализировать данные Cambridge Structural Database [7] относительно структуры анилинов и их молекулярных комплексов. Выбор объектов был обусловлен тем, что в анилинах (Ph-NH₂, Ph-NHR и Ph-NR₂) о состоянии гибридизации атома азота можно делать вывод на основании бо́льшего числа величин углов и длин связей, чем в фенолах (Ph-OH), и особенно в гетероароматических N-оксидах (Py \rightarrow O).

Нами были использованы только те данные PCA, где R-фактор не превышал 5,0 (по аналогии с r > 0,95 в органической, физической, неорганической химии, p < 0,05 в биологической химии, биологии и т. д.).

Для характеристики степени пирамидальности связей в аминогруппе в литературе [6], [16] принято рассматривать суммы величин валентных углов, образуемых атомом азота с двумя атомами водорода и углеродом бензольного кольца (для аммиака и анилина они составляют 319,01° и 339,3° соответственно). Особый интерес представляет величина торсионного угла т между плоскостями аминогруппы и ароматического кольца. Согласно данным работы [6], экспериментальные методы дают следующие величины т для анилина и его производных с заместителями в бензольном кольце: микроволновая спектроскопия – $37,5 \pm 2^{\circ}$ и $42,4 \pm 0,3^{\circ}$, резонансная флуоресценция и дальняя ИК-спектроскопия – $44,3 \pm 0,2^{\circ}$, газовая электронография и рентгеноструктурный анализ – $44 \pm 4^{\circ}$. Данные *ab initio*расчетов методом HF свидетельствуют о том, что угол выхода связи N–C $_{\rm адом}$ из плоскости NH $_2$ составляет 41,8°, а метод MP2 дает величину τ 43.6°.

Среди производных анилина наиболее детально изучены методом микроволновой спектроскопии галогензамещенные о-, м- и п-XC₆H₄NĤ₂, где X = F [9], [10] и Cl [11], [12], [13], [14]. Отмечается [6], что из всех фторзамещенных анилинов только орто-изомер имеет геометрические параметры аминогруппы, наиболее близкие к таковым для анилина, причем его конформация несколько иная, что авторы связывают с возможностью образования внутримолекулярной водородной связи Н... F. В ряду хлорзамещенных анилинов при переходе от орто-ClC H_4NH_2 к пара-изомеру угол τ увеличивается от 34,5 до 41,4°. Величина же угла HNH в ряду галогензамещенных мало изменяется: например, для пара-, фтор- и хлоранилинов она составляет 112 и 111,7° соответственно. Однако при замене одного (!) или двух атомов H в аминогруппе п-FC₄H₄NH₂ на группу СН, угол τ существенно уменьшается [8], [9], 10] (табл. 1).

Таблица 1 Геометрические параметры молекул фторзамещенных анилина (по данным микроволновой спектроскопии [9], [10])

Угол, град.	$C_6H_5NH_2$	FC ₆ H ₄ NH ₂	$FC_6H_4NH_2$	п- FC ₆ H ₄ NHMe	п- FC ₆ H ₄ NMe ₂
HNX (X=H, CH ₃)	113,1	115,0	112	115,6	114
τ	37,5	36,2	46,4	18,3	27

В молекуле мета-CH₃C₆H₄NH₂ планарность аминогруппы увеличивается (Σ = 348,7°) по сравнению с молекулой анилина и снижается величина торсионного угла т до 26,9°(по данным PCA [15]).

В молекуле пара-фенилендиамина угол т немного больше, чем в анилине $(43(4)^\circ)$ [6], а их конформации подобны. Сравнение геометрических параметров этих молекул показывает, что величины длин связей N–C (1,402(2) Å в анилине и 1,424(5) Å в п-фенилендиамине) и валентных углов CC_{NH2}C (119,4(2)° и 119,8(2)° соответственно) близки. Длина связи N–C в ароматических аминах значительно уменьшена по сравнению с алифатическими (в метиламине (1.472(3) Å)), а деформация валентного угла в бензольном кольце при атоме аминного азота CC_{NH2}C незначительна.

Вызывает удивление, что все обсуждаемые в работе [6] литературные данные угла τ не выходят за пределы очень узкого интервала 35–48°, хотя теоретически этот диапазон должен быть значительно шире.

Согласно полученным нами экспериментальным данным [4], [5], константы устойчивости и ΔS^0 образования комплексов при координации Zn(II)тетрафенилпорфином (Zn-TФП) в хлороформе с пара-замещенными анилинами линейно коррелируют с донорно-акцепторными свойствами заместителей и константами скоростей некоторых ферментативных и органических реакций. Мы предположили, что величина ΔS^0 связана с типом гибридизации атома азота в молекуле анилина, которая при наличии в положении 4 сильной электроноакцепторной группы, обладающей – М эффектом (например, NO₂), может быть плоской (sp²-гибридизация атома азота). В пара-фенилендиамине, наоборот, величина угла между плоскостями бензольного кольца и атомов HNH должна приближаться к максимальному значению (sp³-гибридизация).

Проведенный нами анализ данных Cambridge Structural Database за 1970–2010 годы [7] (табл. 2, 3) для анилинов, их солей и молекулярных комплексов показывает, что при образовании новой связи за счет НЭП атома азота анилина происходит удлинение связи С – N от 1,340–1,406 Å до 1,433–1,485 Å, а углы α между связями при этом атоме соответствуют sp³-гибридному состоянию (~109°). В свободных же анилинах совместное использование значений г _{С – N}, углов α и τ (табл. 1, 2) позволяет оценить степень sp³ ($\alpha \sim 109^\circ$, $\tau 20-50^\circ$) – sp² ($\alpha = 120^\circ$, $\tau = 0^\circ$) гибридизации атома азота. Например, введение (табл. 3) в бензольное кольцо анилина (№ 32, 36), 4-метил- (№ 22, 23), 4-метокси- (№ 3, 4), 4-иод-(№ 18–20) и хлоранилинов (№ 5–15, 42, 45) NO₂-, а 4-броманилина СОМе-групп (№ 30–32) приводит к укорочению С – N связи и уменьшению угла τ (α приближается к 120°), что свидетельствует о sp³ → sp² перегибридизации атома азота NH₂, группы.

Ванилинах (№ 1, 2, 3, 5–11, 18, 22, 24–30, 33–35, 37, 38, 46, 58, 62-64, 69; табл. 3), содержащих алкильные (положительные эффекты: гиперконъюгации в орто- и пара- и индуктивный во всех положениях бензольного кольца) или обладающие +М эффектом функциональные группы, угол т составляет 22-49°, и его величина возрастает с увеличением объема находящихся рядом заместителей (в гекса-N,N-диметиламинобензоле № 84 достигает 89,74°, табл. 3). Наоборот, при накоплении в бензольном кольце функциональных групп, обладающих -М эффектом, таких как NO₂, COOH, COOR, C≡CH, C≡N, C(H)=O и C(R)=O (№ 4, 12–15, 17, 19–21, 23, 31, 32, 36, 41– 44, 47, 49–51, 53, 57, 59, 60, 65, 67, 72, 75, 76, 78, 79, 81; табл. 3), этот угол уменьшается $(0-7^{\circ})$, молекула становится все более плоской, и атом азота в конце концов переходит в sp²-гибридное состояние. Пространственное строение молекул анилинов с атомом азота в состоянии sp³-(4диметиламиноанилин) и sp²-(метиловый эфир 2-амино-3,5-дибромбензойной кислоты) гибридизации приведено на рисунке.

Структура [7] а) 4-диметиламиноанилина (GILYOP) и б) метилового эфира 2-амино-3,5-дибромбензойной кислоты (ICAMUU)

Таким образом, согласно данным Cambridge Structural Database, в твердой фазе тип гибридизации (sp² – sp³) атома азота аминогруппы в анилинах определяется электронными и стерическими эффектами заместителей в бензольном кольце. Несмотря на то что подобные выводы нужно с большой осторожностью использовать для характеристики конформационного состояния молекул в жидкостях, мы бы хотели на примере комплексообразования Zn-TФП с анилинами в хлороформе доказать, что числовые значения, которыми оперируют в РСА, во многих случаях могут быть применимы для химических и биохимических процессов, протекающих в растворах. Напомним, что при установлении нативной структуры высокомолекулярных

Таблица 2

				NH ₂		·Y			
№	X	Y	r _{c-N,} Å	CSD refcode	№	X	Y	$R_{C-N,}$ Å	CSD REFCODE
1	4-NH ₂	2 HCl	1,463	PHNDMC11	20		PdCl ₂	1,462	DEBKAW
2		2HBr	1,470	QUEHVIJ	21	3,4-F ₂	PdCl ₂	1,433	QETXOD
3		2HI, ZnI ₂	1,468	MEGPAO	22	2,3,4-F ₃	PdCl ₂	1,438	QETXUJ
4	4-OCH ₃	H ₃ PO ₄	1,464	VOWWEM	23	3-C1	HCl	1,464	UFAJOA
5		4-нитробензоат	1,462	JEJNES	24		PdCl ₂	1,436	YELMOS
6	4-C1	H ₃ AsO ₄	1,460	CENROD	25	2-C1	HCl	1,457	UFAJAM
7		HCl	1,465	CURGOL	26		HBr	1,471	TAYVEV
8		Cl ₃ CCOOH	1,459	GARVAW	27		пикрат	1,461	SARJEB
9	4-Cl, 2-CH ₃	HCl, H ₂ O	1,466	TALWEJ	28	2,5-Cl ₂	HCl	1,462	EDUGUF
10	4-I	3-нитрофталат	1,459	EKELUB	29	2,4,6-Cl ₃	HCl	1,452	JACSAI
11		2-карбокси 4-нитробензоат	1,464	FOMFOD	30	4-Br	2-карбокси-4- нитробензоат	1,465	FOMFIX
12	4-CH ₃	HCl	1,467	TOLHCL01	31		5-сульфосалицилат	1,54	QANLEX
13		ZnCl ₂	1,464	FETKAR	32		HCl	1,463	TAWRAL
14		2-сульфокислота	1,467	HEKSOF	33		HBr, 0.5 H ₂ O	1,463	UFAKER
15		Zn(NCS) ₂	1,442	ITPTZN	34		8-гидрокси-7-иод-5- сульфонат, Н ₂ О	1,470	RIGLOJ
16	2,4,6-(CH ₃) ₃	HI	1,475	JEVPUW	35	2,4-Br ₂	HBr	1,453	JACRAH
17	4-F	HCl	1,464	ANLCLA	36	2,4,6-Br ₃	HBr	1,457	JACSEM
18		HBr	1,462	DOMBOW	37	4-COCH ₃	HCl, H ₂ O	1,454	ETEZIM
19		HBr	1,485	DOMBOW01	38		CuCl ₂	1,499	VETNEO

Данные РСА солей и молекулярных комплексов анилинов [8]

Таблица З

Данные рентгеноструктурного анализа анилинов [8]

№	Х	R _{C-N,} Å	А, град.	Т, град.	CSD REFCODE	№	Х	R _{C-N,} Å	А, град.	Т, град.	CSD REFCODE		
	NH ₂ X												
1	4-NH ₂ ^a	1,394	112,79	32,61	PDTCNB	42	2-Cl, 5-NO ₂	1,383	123,20	5,65	YOVCAO		
2	4-NMe ₂	$1,409 - NH_2$ $1,425 - NMe_2$	114,96 111,97	43,38 48,81	GILYOP	43	2,5-NO ₂ , 4-Me	1,370	122,41	4,62	COTKUS		
3	4- OCH ₃	1,398	108,78	33,55	PANISD01	44	2.4-NO ₂ , 5-Me	1,346	121,45	6,83	COTLAZ		
4	4-OCH ₃ , 2-NO ₂	1,348	122,86	0	QEXNIR	45	2,3-NO ₂ , 6-Me	1,348	120,81	16,41	COTLIH		
5	4-C1	1,387	114,52	32,61	CLANIC05	46	2-NHCOPh(2-NHPh)	1,389	114,08	35,72	MOSVOG		
6	3,4-Cl ₂	1,397	112,26	32,85	WEMDOH	47	2-COOMe, 4-OMe, 5-O(CH ₂) ₃ Cl	1,393 1,388	119,97 119,98	0,45 1,07	QOTNET		
7	3,5-Cl ₂	1,401	123,81	37,17	WEMDUN	48	2-N=CHPh (2-OH), 4,5-CN	1,360	121,54	18,94	QOTRAT		
8	2,5-Cl ₂	1,394	11,66	37,20	DCHLAN01	49	3,6-C≡CH, 4-NO ₂	1,345	119,85	4,75	SOLHUX		
9	2,3-Cl ₂	1,387	115,64	34,29	WEMDAT	50	2-COOMe, 4- NHSO ₂ Ph(4-Br)	1,364	120,00	0,77	SOSQOH		

Окончание табл. 3

10	2,6-Cl ₂	1,372	113,32	38,35	WEMDEX	51	2-NH2, 4,5-CN	1,366 1,379	119,97 120,01	1,49 4,32	VOQKUI
11	2,4-Cl ₂	1,395	112,39	32,31	WEMDIB	52	5-amino-1-methyl-1-H- benzimidazol	1,392	119,95	0,83	MUBQIK
12	2-Cl, 3,5- (NO ₂) ₂	1,356	120,01	1,60	RATHAW	53	$3-SO_2NH_2$, $4-Me$	1,379	119,93	1,32	MUBVOV
13	2-Cl, 4,6- (NO ₂) ₂	1,327	121,88	2,40	UCECAG03	54	4-COOCMe ₂ COCH ₂ CN	1,362	119,26	17,01	POTDUY
14	2-NO ₂ , 5-Cl	1,340	117,43	4,59	RAPKUP	55	2-(1-H-benzimidazol-2- yl), 4-I	1,395	93,07	48,11	XOWFOF
15	4-Cl, 6-NO ₂	1,348	120,00	1,44	WEVNIV	56	2-Cl, 5-NO ₂	1,383	117,67	40,30	VOVCAO
16	3-Cl, 4- CONHNH ₂	1,396	112,54	43,72	WEPVUJ	57	2-Me, 4-COOMe	1,372	120,03	0,93	BIZFIA
17	2-Cl, 4- COOSnMe ₃	1,372	120,59	6,51	MELVOP	58	4-O(CH ₂) ₂ OPh(4-NH ₂)	1,420	120,49	41,33	BIZZOA
18	4-I	1,397	117,74	38,93	EJAYET	59	4-OSO ₂ (1-naphtyl)	1,367	119,98	1,94	BOBBAW
19	4-I, 2-NO ₂	1,343	120,05	0,75	CAMSOZ	60	$2\text{-OCH2C(OEt)}_2, 4\text{-NO}_2$	1,353	118,64	7,56	DOTQOT
20	2,4-I ₂ , 3-NO ₂	1,380	119,99	0	CAMSUF	61	4-SF ₅	1,381	122,14	24,97	GISVOU
21	4-I, 2-COO-	1,346	119,88	0	MAVMEC	62	2,6-OH, 3-COPh(2-OH)	1,419	110,91	52,33	HIWMUW
22	4-CH,	1,400	116,72	25,91	EDACUI	63	2,6-OH, 3-COPh(4-F)	1,421	113,16	50,16	HIWNAD
23	4-CH ₃ , 2,6-(NO ₂) ₂	1,367	120,00	0	ISAYAC01	64	2,6-OH, 3-COPh (2,3-Me)	1,418	108,29	41,94	HIWNEH
24	3,4-Me ₂	1,406	116,23	44,65	WEMFAV	65	$4-O(CH_2)_2OPh(4-NO_2)$	1,409	120,06	2,10	IFUVIP
25	2-OH, 4-Me	1,423	109,80	48,81	MASZOW	66	4-CMe=NOH	1,417	111,24	50,27	IGABOI
26	3-OH, 4-Me	1,425	111,57	47,25	MATBOZ	67	4-CMe=NNHCOPh	1,394	120,04	2,11	JODNOG
27	4-F	1,395	11,29	37,45	IDAHUR	68	2-N=CPhPh(2-OH, 4-OMe)	1,373	120,00	1,77	KOFTUV
28	3-Cl, 4-F	1,398	117,66	35,71	KUMTER	69	4-OPhOPh(4-NH ₂)	1,401	112,65	44,14	LIVTAM
29	2,3,4,5,6-F ₅	1,376	118,59	31,29	YIFXER	70	4-C(Me)=NNHCSMe	1,377	111,13	27,31	LOBZUY
30	4-Br	1,396	120,93	27,16	PBRANL01	71	$4-COO(CH_2)_2NH^+Et_2Cl^-$	1,367	112,55	33,77	PROCHC11
31	2,4-Br ₂ , 6-COMe	1,349	120,05	1,42	ICAMUU	72	2,4-NO ₂ , 5-NH ₂	1,344 1,334	119,99 120,05	2,91 2,55	SIYWIH
32	2-COMe, 4-Br	1,363	120,06	3,26	ICANAB	73	2,4,6-I, 3,5-СООН	1,397	104,41	47,09	SOGGUR
_33	Ηб	1,394	110,48	35,40	RAPLEA	74	2-Me, 4-I	1,404	120,05	2,62	TITZUS
34	2,4,6-F ₃	1,396	115,81	44,05	IGAPUC	75	2,6-CN, 3,4-Ph, 5-COOEt	1,347 1,349	119,88 119,90	1,50 1,79	VIXPIC
35	2-Cl,4-I	1,394	110,41	41,12	VOJBAY	76	2.6-CN, 3,4-pTol, 5-COOEt	1,353	120,02	1,10	VIXPOI
36	2-Br, 4-NO ₂	1,382	120,09	2,01	SOLSAO	77	$4-SO_2NH_2$	1,379	116,66	34,50	WOBHUR
37	2,6-pyrazol- 1-yl, 4-t-Bu	1,389	114,21	39,91	DONYOV	78	2,6-CN, 3-C≡CSiMe ₃ , 5-SiMe ₃	1,360	128,14	0,83	XOCVUH
38	4- O(CH ₂) ₆ OPh (4-NH ₂)	1,415	110,07	41,76	LOSHUX	79	2,6-CN, 3-C≡CSiMe ₃ , 5-SiMe ₃	1,359	119,99	0,94	XOCVUH02
39	4-CH ₂ Ph	1,388	117,74	33,91	POQQOC	80	2,6-Me ₂ , 4-Br	1,399 1,401	120,01 120,00	5,25 2,83	YIRTUP
40	2-SPh(2- NH ₂)	1,369 1,394	119,51 113,92	12,79 32,95	SOMKIP	81	2-COPh(2-Cl),4-Cl	1,348	124,43	7,31	YIXSEE
41	2-Et, 5-NO ₂	1,395	122,83	6,11	VOQJER						

82	Н	1,371	119,02	1,88	GENLER	85	4- NMe ₂ в	1,392	116,41	22,49	HAFVEQ
83		1,372	117,95	9,48	GENLAN	86	Г	1,364	116,79	2,48	DAYVOP
84	$(NMe_2)_5$	1,439	111,77	89,74	GENFAG						

Примечание. α – углы H-N-H, C-N-H или C-N-C, θ – углы между плоскостями бензольного кольца и атомов аминогруппы. π-Комплексы: а с тетрацианоэтиленом, б с 3,4-дихлорнитробензолом, в с 4,4,6,6 -тетрациано-бис(1,3,5-триазином); 4-диэтиламиносалициловый альдегид. объектов (например, белков) широко используются данные, полученные методом РСА для их кристаллических форм. В дальнейшем мы предполагаем привлечь для исследования молекулярных комплексов анилинов с v-акцепторами метод газовой электронографии, так как результаты, полученные в отсутствие взаимодействий между молекулами аддуктов, могут дать дополнительную косвенную информацию о пространственном строении комплексов в растворах.

*Работа выполнена при поддержке Программы стратегического развития (ПСР) ПетрГУ в рамках реализации комплекса мероприятий по развитию научно-исследовательской деятельности на 2012-2016 гг.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев В. П. Молекулярные комплексы гетероароматических N-оксидов и ацетиленовых аминов с v-акцепторами как модель исследования нуклеофильности и основности соединений с пространственно доступными реакционными центрами: Дисс. ... д-ра хим. наук. Петрозаводск, 2007. 427 с.
- 2. Андреев В. П., Вапиров В. В., Нижник Я. П., Алешина Л. А., Семенова Т. А. Изменение гибридизации атома кислорода группы N-O при комплексообразовании N-оксидов пиридинов и хинолинов с v-акцепторами // ЖОХ. 2008. Т. 78. Вып. 5. С. 830-840.
- 3. Андреев В. П., Нижник Я. П. Исследование комплексообразования N-оксидов пиридинов и хинолинов с трифторидом бора методом протонного магнитного резонанса // Координационная химия. 2007. Т. 33. № 9. С. 703–708. 4. Андреев В. П., Соболев П. С., Зайцев Д. О. Количественные корреляции, связывающие процессы координации
- Zп-ТФП и реакции нуклеофильного замещения с участием анилинов // ЖОрХ. 2012. Т. 48 Вып. 6. С. 776–783
 Андреев В. П., Соболев П. С., Зайцев Д. О., Галибина Н. С., Зыкина Н. С., Плясунова Л. Ю., Романова М. И. Взаимодействие Zn-ТФП, бромистого пропаргила и пероксидазы хрена с анилинами // Ученые записки Петрозаводского государственного университета. Сер. «Естественные и технические науки». 2011. № 6 (119). С. 7–15.
- Кустова Т. П. Аренсульфонилирование аминов, аренкарбогидразидов и аминокислот: влияние строения реагентов и эффекты среды: Дисс. ... д-ра хим. наук. Иваново, 2008. 300 с.
 Cambridge Structural Database, 2010 [Электронный ресурс]. Режим доступа: http://www.ccdc.cam.ac.uk
- Cervellati R., Dal Borgo A., Scappini F. r0-Structure determination of the HNCH₃ group of N-methyl-p-fluoroaniline by microwave spectroscopy // J. Mol. Struct. 1979. Vol. 56. № 1. P. 69–75.
 Christen D., Damiani D., Lister D. G. The conformation of o-fluoroaniline by microwave spectroscopy // J. Mol. Struct.
- 1977. Vol. 41. № 2. P. 315–317.
- 10. Nonat A., Bouchy A. Microwave spectra and structure of the amine group in orthofluoroaniline, C₆H₄F-NH₂ // J. Mol. Spectrosc. 1985. Vol. 114. № 1. P. 13–22.
- 11. Nonat A., Bouchy A., Roussy G. Microwave spectra of meta-chloroaniline // J. Mol. Struct. 1983. Vol. 97. P. 83-86.
- 12. Nonat A., Bouchy A., Roussy G. Microwave substitution structure of the amine group in metachloroaniline C₆H₄Cl-NH, // J. Mol. Spectrosc. 1983. Vol. 99. № 2. P. 407–414.
- 13. Nonat A., Bouchy A., Roussy G. Etude de la structure geometrique de la molecule de parachloroaniline par spectroscopie microonde // J. Mol. Struct. 1984. Vol. 116. № 3/4. P. 227-237.
- Nonat A., Bouchy A., Roussy G. Microwave substitution structure of the amine group in orthochloroaniline, C₆H₄ClNH₂ // J. Mol. Spectrosc. 1984. Vol. 108. № 2. P. 230–239.
- Rukiah M., Lefebvre J., Descamps M., Henon S., Dzyabchenko A. Ab initio structure determination of m-toluidine by powder X ray diffraction // J. Appl. Crystallogr. 2004. Vol. 37. P. 464–471.
 Szatylowicz H., Krygowski T. M., Hobza P. How the shape of the NH, group depends on the substituent effect and H-bond formation in derivatives of aniline // J. Phys. Chem. A. 2007. Vol. 111. P. 170–175.