Сентябрь, № 6 УДК 548.737 Физико-математические науки

НАТАЛЬЯ ВАЛЕРЬЕВНА МЕЛЕХ

кандидат физико-математических наук, старший научный сотрудник Управления научных исследований, Петрозаводский государственный университет (Петрозаводск, Российская Федерация) natalie melekh@mail.ru

- ЛЮДМИЛА АЛЕКСАНДРОВНА АЛЕШИНА кандидат физико-математических наук, профессор кафедры физики твердого тела физико-технического факультета, Петрозаводский государственный университет (Петрозаводск, Российская Федерация) aleshina@psu.karelia.ru

УТОЧНЕНИЕ АТОМНОЙ СТРУКТУРЫ ПОРОШКОВОЙ ЦЕЛЛОБИОЗЫ МЕТОДОМ РИТВЕЛЬДА*

Методом полнопрофильного анализа уточнена структура порошковой β -целлобиозы. Определены координаты базисных атомов, а также параметры их теплового смещения. Периоды и угол моноклинности элементарной ячейки составили: a = 10,980(3) Å, b = 13,076(5) Å, c = 5,093(1) Å, $\beta = 90,90(2)^{\circ}$.

Ключевые слова: рентгеноструктурный анализ, полнопрофильный анализ, порошковая β-целлобиоза

Порошковую целлобиозу получают при частичном гидролизе целлюлозы, она относится к группе дисахаридов. В свободном виде целлобиоза содержится в соке некоторых деревьев, прорастающих семенах, косточках абрикосов.

Ранее рентгенографические исследования β-целлобиозы были выполнены в [4], [5], [6], [8] на монокристаллических образцах, полученных выпариванием раствора порошковой целлобиозы в различных растворителях и с различной скоростью испарения. В табл. 1 приведены кристаллографические характеристики, полученные в указанных работах.

	Таблица 1
Периоды (a, b, c), угол моноклинн	ости (β)
и объем (V) элементарной ячейки	целло-
биозы. Указан код (REFCOD) в Ке	мбрид-
жской базе данных. Пространств	енная
группа симметрии Р 2, (№ 4)

REFCOD Ссылка	CELLOB [6]	CELLOB01 [4]	CELLOB02 [5]	CELLOB04 [8]
a, Å	10,94(2)	10,993	10,972(4)	5,0633(2)
b, Å	13,05(5)	13,022	13,048(5)	13,0170(5)
c, Å	5,11(2)	5,063	5,091(3)	10,9499(4)
β°	90,0(5)	90,77	90,83(5)	90,811(2)
V, Å ³	729,539	724,707	728,765	721,624

Таким образом, β-целлобиоза кристаллизуется в моноклинной сингонии. Ориентация кристаллографических осей, выбранная в [8], отличается от таковой в [4], [5], [6] тем, что оси х и z поменяны местами.

На элементарную ячейку приходится две молекулы целлобиозы, каждая из которых, как и элементарное звено целлюлоз, состоит из двух глюкозных остатков (рис. 1). Базисными (х, у, z) являются координаты одной молекулы, координаты другой отображаются по закону –х, ½+у, –z: винтовая ось симметрии 2-го порядка. Глюкозные остатки одной молекулы не связаны между собой элементами симметрии.

Различие в кристаллографических характеристиках говорит о том, что условия выращивания монокристаллов влияют на структурные характеристики монокристаллов целлобиозы.

На рис. 1 приведено расположение атомов в элементарных ячейках в проекциях на плоскости ab [4], [5], [6] и bc [8], построенных с помощью программы Mercury [9] по координатам атомов, приведенным в cif-файлах, представленных авторами [4], [5], [6], [8] в Кембриджскую базу данных [3].

Рис. 1. Проекции расположения атомов в ячейке β-целлобиозы

Молекулы целлобиозы связаны между собой водородными связями, но они не образуют цепочек, вытянутых вдоль оси Z (рис. 2), как это имеет место в целлюлозах I и II.

Рис. 2. Система водородных связей между молекулами в структуре β-целлобиозы

В ходе анализа результатов работ [4], [5], [6], [8] были проведены расчеты межатомных расстояний и углов связи по координатам атомов, приведенным в данных работах, с помощью программы Mercury [9].

Анализ значений указанных межатомных расстояний показал, что различие в величинах длин связей С–С и С–О минимально между данными работ [5], [8]: третий знак после запятой. Соответствующие значения, приведенные в [4], [6], отличаются от вышеуказанных уже во втором знаке после запятой как в большую, так и в меньшую сторону.

Угол связи между глюкозными кольцами составляет $(116 \pm 0.1)^{\circ}$ по данным [5], [8] и $(117 \pm 0.4)^{\circ}$ по данным работ [4], [6]. Разброс в значениях углов связи С – С – О более значителен и достигает 5°.

На начальном этапе уточнения структуры исследуемого порошкового образца β-Dцеллобиозы использовалась программа «Метод Ритвельда» программного комплекса PdWin [1]. В качестве исходных структурных характеристик вводились атомные координаты и характеристики тепловых смещений, приведенные в работах [4], [5], [6], [8]. Для каждой группы структурных характеристик были уточнены масштабный фактор, коэффициенты полинома фона, параметры полуширины пиков, а также периоды и углы элементарной ячейки, параметр 20, характеризующий сдвиг нуля счетчика, и параметр, учитывающий асимметрию пиков (As), то есть профильные параметры рентгенограммы. Минимальное значение профильного фактора недостоверности 22,5 % было достигнуто для модели CELLOB02 [5].

В процессе уточнения профильных параметров было обнаружено, что ряд отражений на рентгенограмме завышен по интенсивности. Это свидетельствовало о наличии в образце преимущественной ориентации кристаллитов – текстуры. Уточнение текстурного параметра для ряда возможных индексов оси текстуры показало, что индексы оси текстуры [210]. Величина текстурного параметра Т составила 0,242, а профильный фактор недостоверности уменьшился более чем в два раза и стал равным для модели CELLOB02 11,1 %, оставаясь по-прежнему минимальным.

Анализ полученной после учета текстуры рентгенограммы показал, что текстура, вероятнее всего, не является аксиальной. Учет сложной текстуры реализован в программе MRIA [10].

Обработка рентгенограммы на начальном этапе решения задачи уточнения структурных характеристик – координат и параметров теплового движения атомов – заключается в разложении рентгенограммы на сумму интегральных интенсивностей (FPD-разложение) [2]. На данном этапе уточняются все профильные параметры, включая периоды элементарной ячейки, кроме текстуры; расчет проводится без использования в качестве входных данных значений координат атомов. Результирующие значения факторов недостоверности, полученные с помощью программы MRIA, составили: профильный $R_p = 4,6\%$, брэгговский $R_b = 3,2\%$.

² Значения факторов недостоверности, полученные в процессе FPD-разложения, являются минимально возможными для данной рентгенограммы и показывают, что пространственная группа симметрии выбрана верно.

При переходе на стадию уточнения методом Ритвельда вводятся координаты атомов и параметры теплового движения для той или иной модели, значения которых необходимо уточнить. После введения координат атомов для модели до процесса уточнения профильный и брэгговский факторы недостоверности имели значения 38 и 32 % соответственно. Первым шагом на данном этапе являлся учет влияния текстуры. Было установлено, что текстура соответствует модели разложения по симметризованным гармоникам [7]. Значимые величины имели коэффициенты вплоть до 15-го порядка включительно. Результирующие значения факторов недостоверности составили: профильный R_n = 16,03 %, брэгговский $R_b = 12,02$ %.

Далее проводилось уточнение координат атомов. При этом в качестве начальных использовались сведения об изотропных тепловых параметрах. На данном этапе уточнения все профильные параметры, включая текстурные, также периодически уточнялись. Впоследствии изотропные тепловые параметры были переведены в анизотропные и уточнены. Результирующие значения факторов недостоверности составили: профильный R_p = 3,7 %, брэгговский R_b = 3,0 %. На рис. 3 представлены экспериментальный и рассчитанный теоретически профили рентгенограммы β-D-целлобиозы.

В табл. 2 приведены характеристики дифракционного эксперимента и уточненные кристаллографические характеристики исследуемого образца целлобиозы в сравнении с результатами работы [5]. Видно, что различие в периодах и угле элементарной ячейки, хотя и незначительно, но выходит за пределы погрешности, и это связано с природой образца.

В табл. 3, 4 приведены уточненные значения координат базисных атомов и изотропных тепловых параметров **В** атомов углерода и кислорода, а в табл. 5 – рассчитанные по значениям координат межатомные расстояния и углы связи в исследуемом образце.

Из данных табл. 3 следует, что уточненные координаты атомов углерода и кислорода в по-

рошковом образце β-целлобиозы в основном находятся в хорошем согласии с данными [5].

Уточненные значения анизотропных тепловых параметров (b_{ij}) атомов углерода и кислорода приведены в табл. 4. Значение изотропного теплового параметра **В** для атомов водорода было принято равным 4,0 Å².

Расчет межатомных расстояний по уточненным значениям координат показал, что в целом значения длин связей, рассчитанные для порошкового образца, лежат в пределах: С-С = 1,505 ÷ 1,558 Å, С-О = 1,386 ÷ 1,481 Å (табл. 7), что достаточно хорошо согласуется с соответствующими данными работ [4], [5], [6], [8].

Значения углов связей С1-О1-С8 (между глюкозными остатками) и С9-С11-О10 укладываются в диапазон значений, найденных в работах [4], [5], [6], [8] для монокристаллов, а угол связи С10-С12-О11 в порошковой целлобиозе выше на градус.

Рис. 3. Теоретическая (—) рассчитанная по данным, полученным в результате уточнения профильных и структурных параметров, и экспериментальная (+++) кривые распределения интенсивности рассеяния рентгеновских лучей порошковым образцом β-целлобиозы. Внизу указана разностная кривая

Таблица 2

Характеристики дифракционного эксперимента и кристаллической структуры целлобиозы

Характеристики дифракционного экс- перимента данной работы	Кристаллографические характеристики целлобиозы [C ₁₂ O ₁₁ H ₂₂]				
	Данная работа	[5]			
Излучение Си Ка	Моноклинная, P2 ₁ , Z = 2				
	М _{эл.яч.} = 684,68				
$\theta = 2,5-30^{\circ}$	a = 10,980(3) Å	a = 10,972(4)			
	b = 13,076(5) Å	b = 13,048(5)			
= 12.21 pag	c = 5,093(1) Å	c = 5,0913(2) Å			
$\mu = 12,21$ MM ²	$\beta = 90,90(2)^{\circ}$	$\beta = 90,83(5)^{\circ}$			
Т = 293 К	$V = 731,8(7)Å^3$	$V = 728 (7) Å^3$			
Белый порошок в кювете 17,5 × 17,5 × 2 мм	$ρ_{\rm pehtr} = 1,55$ г/см ³	$ \rho_{\rm pehtr} = 1,56 {\rm г/cm^3} $			

Таблица З

Координаты базисных атомов в образце β-D-целлобиозы в сопоставлении с данными [5]

Amore	[5]		[5]		Данная работа			
Атом	x	y	Z	Атом	х	y	Z	
C1	0,2517	-0,0409	0,5259	C1	.2515(3)	0436(3)	.5228(13)	
C2	0,0449	0,2670	0,0176	C2	.0477(3)	.2620(3)	.0049(10)	
C3	0,2684	-0,1560	0,4883	C3	.2709(3)	1591(3)	.4699(13)	
C4	0,1711	0,2807	0,1365	C4	.1707(3)	.2815(3)	.1444(10)	
C5	0,3292	-0,1992	0,7346	C5	.3315(3)	2027(3)	.7156(12)	
C6	0,2311	0,1769	0,1783	C6	.2303(3)	.1771(3)	.1827(11)	
C7	0,4506	-0,1438	0,7852	C7	.4508(3)	1446(3)	.7826(11)	
C8	0,1481	0,1029	0,3256	C8	.1470(3)	.1012(3)	.3274(11)	
C9	0,4330	-0,0273	0,7848	C9	.4326(3)	0263(3)	.7956(11)	
C10	0,0188	0,1006	0,2101	C10	.0215(3)	.1002(3)	.2039(10)	
C11	0,5550	0,0277	0,7793	C11	.5565(3)	.0251(3)	.7668(13)	
C12	-0,0702	0,0438	0,3772	C12	0715(2)	.0463(3)	.3849(11)	
01	0,19550	0,0000	0,3013	01	.1986(2)	.0000(3)	.2972(8)	
O2	-0,0138	0,3603	-0,0007	O2	0149(2)	.3589(2)	.0095(9)	
O3	0,1551	-0,2025	0,4254	O3	.1547(2)	2041(2)	.4380(9)	
O4	0,2471	0,3360	-0,0377	04	.2457(2)	.3340(2)	0345(9)	
05	0,3456	-0,3075	0,7189	O5	.3435(2)	3113(2)	.7020(10)	
06	0,3425	0,1943	0,3122	O6	.3423(2)	.1929(2)	.3054(9)	
07	0,4967	-0,1753	1,0343	07	.4946(2)	1759(2)	1.0431(8)	
08	0,3692	0,0049	0,5507	08	.3665(2)	.0021(3)	.5506(10)	
O9	-0,0263	0,2036	0,1873	O9	0250(2)	.2039(2)	.1950(9)	
O10	0,5418	0,1338	0,7271	O10	.5452(2)	.1313(3)	.7169(8)	
O11	-0,1830	0,0271	0,2428	011	1834(2)	.0263(2)	.2569(8)	
		[5]			. [5]		
H1	0,2050	-0,0250	0,6900	H12	0,5850	-0,1950	1,028	
H2	-0,0400	0,3700	-0,1850	H13	0,5100	-0,1700	0,640	
H3	0,0550	0,2450	-0,1920	H14	0,1400	0,1200	0,5150	
H4	0,1120	-0,2140	0,5930	H15	0,3850	0,0050	0,9420	
H5	0,3200	-0,1700	0,3200	H16	0,0300	0,0650	0,0250	
H6	0,1650	0,3180	0,3150	H17	0,5450	0,1700	0,8860	
H7	0,2160	0,3930	-0,1150	H18	-0,2300	0,0840	0,2000	
H8	0,3820	-0,3120	0,5640	H19	0,6100	-0,0020	0,6400	
H9	0,2700	-0,1800	0,8650	H20	-0,0280	0,0800	0,5400	
H10	0,2550	0,1400	0,0000	H21	-0,0250	-0,0200	0,4400	
H11	0,3750	0,1400	0,4200	H22	0,5900	0,0000	0,9700	
							Таблица 4	

Уточненные значения анизотропных тепловых параметров $b_{ij}~({\rm \AA\,}^2)$ атомов С и О образца β-целлобиозы

Атом	C1	C2	C3	C4	C5	C6	C7	C8
b11	.0050(07)	.0061(07)	.0217(08)	.0068(07)	.0209(10)	.0129(07)	.0050(07)	.0164(08)
b22	.0124(10)	.0028(07)	0011(07)	.0006(06)	.0071(10)	.0055(08)	.0092(08)	.0065(08)
b33	.1156(05)	0420(65)	.0939(87)	.0147(57)	.1111(99)	0093(70)	.0021(63)	.0692(86)
b12	.0024(18)	.0007(13)	0027(16)	.0155(12)	.0084(15)	.0009(16)	.0048(15)	0129(17)
b13	.0147(51)	0301(41)	0377(50)	0029(36)	.0268(53)	.0005(43)	.0455(35)	0331(46)
b23	.0401(56)	0036(38)	0185(52)	.1207(33)	.0416(71)	0232(43)	.0475(48)	.0583(52)
Атом	C9	C10	C11	C12	01	O2	03	O4
b11	.0116(09)	.0120(07)	.0448(15)	0007(06)	.0094(5)	.0093(05)	.0052(04)	.0011(4)
b22	.0106(09)	.0056(08)	.0219(12)	.0038(07)	.0082(5)	.0164(08)	.0125(05)	.0074(5)
b33	.1188(97)	0796(48)	.0242(81)	.0922(79)	.0655(8)	.0790(54)	0145(36)	.1046(1)
b12	.0182(16)	.0233(14)	.0070(21)	0023(10)	0149(9)	0113(10)	0131(08)	.0057(8)
b13	0117(46)	0101(33)	.0199(57)	0301(35)	0204(5)	0105(27)	0048(23)	.0010(3)
b23	0773(57)	.0401(41)	0224(70)	0297(46)	.0545(7)	0350(36)	0213(30)	.0360(4)
Атом	05	06	07	08	09	O10	O11	
b11	.0144(05)	.0133(05)	.0037(03)	.0159(05)	.0073(04)	.0128(04)	.0082(04)	
b22	.0027(04)	.0025(04)	.0125(05)	.0044(05)	.0006(04)	.0075(05)	.0033(04)	
b33	.0987(56)	.0581(48)	.0767(49)	.1538(66)	.0815(49)	.0160(42)	.0400(44)	
b12	.0047(09)	.0011(10)	0045(09)	.0015(10)	0050(08)	.0002(09)	.0099(07)	
b13	0100(26)	0309(28)	0086(24)	.0284(33)	.0012(28)	0128(25)	0290(21)	
b23	.0359(31)	0402(25)	.0516(29)	.0046(38)	.0241(34)	.0295(30)	0078(29)	

Таблица 5

			-	1				
атом 1	атом 2	r ₁₂ , Å	атом 1	атом 2	r ₁₂ , Å	атом 1	атом 2	r ₁₂ , Å
C1	C3	1,546	05	C5	1,425	C7	H13	1,036
C2	C4	1,537	O6	C6	1,386	C8	H14	0,990
C3	C5	1,519	07	C7	1,462	C9	H15	1,003
C4	C6	1,522	08	C1	1,401	C10	H16	1,025
C5	C7	1,546	08	C9	1,481	C11	H19	0,947
C6	C8	1,542	09	C2	1,473	C11	H22	1,141
C7	C9	1,558	09	C10	1,447	C12	H20	1,017
C8	C10	1,505	O10	C11	1,414	O3	H4	0,933
C9	C11	1,525	011	C12	1,406	04	H7	0,929
C10	C12	1,553	C1	H1	1,028	02	H2	1,034
O1	C1	1,405	C2	H3	1,031	05	H8	0,825
O1	C8	1,434	C3	Н5	0,951	O6	H11	0,969
02	C2	1,439	C4	H6	0,993	07	H12	1,027
O3	C3	1,411	C5	H9	1,066	O10	H17	0,998
04	C4	1,413	C6	H10	1,086	O11	H18	0,953

Значения кратчайших межатомных расстояний и углов связей между атомами в элементарных звеньях порошковой целлобиозы

Некоторые углы связей

Ат1-ат2-ат3	Угол, °	Ат1-ат2-ат3	Угол, °	Ат1- ат2-ат3	Угол, °
C1-O1-C8	116,7	C9-C11-O10	111,9	C10-C12-O11	112,7

Таким образом, нами была впервые уточнена атомная структура порошковой целлобиозы и показано, что в целом она качественно соответствует моделям, предложенным для монокристаллов, но не отождествляется ни с одной из них.

СПИСОК ЛИТЕРАТУРЫ

- 1. Программа «Метод Ритвельда» № 2006610292 от 27.03.2006 // Программный комплекс PDWin 4.0. НПО «Буревестник». СПб., 2004. 24 с.
- 2. Чернышев В. В. Определение кристаллических структур по порошковым данным // Известия Академии наук. Серия химическая. 2001. С. 2171-2190.
- 3. Allen F. H. The Cambridge structural database: a quarter of a million crystal structures and rising // Acta Cryst. 2002. B58. P. 380-388.
- 4. Brown C. J. The crystalline structure of the sugars. Part VI. A three-dimensional analysis of β-celloboise // J. Chem. Soc. A. 1966. P. 927.
- 5. Chu S. S. C., Jeffey G. A. The refinement of the crystal structures of β-D-glucose and cellobiose // Acta Cryst. B. 1968. Vol. 24. P. 830-838.
- 6. Jakobson R. A., Wunderlich J. A., Lipscomb W. N. The crystal and molecular structure of cellobiose // Acta Cryst. 1961. Vol. 14. P. 598-607.
- 7. Järvinen M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect // J. Appl. Cryst. 1993. Vol. 26. P. 525. 8. Kalenius E., Kekäläinen T., Neitola R., Beyeh K., Rissanen R., Vainiotaio P. Size- and Structure-Selective
- Noncovalent Recognition of Saccharides by Tetraethyl and Tetraphenyl Resorcinarenes in the Gas Phase // Chem.-Eur. J. 2008.
- Vol. 14. P. 5772–5779.
 9. Macrae C. F., Edgington P. R., McCabe P., Pidcock E., Shields G. P., Taylor R., Towler M., van de Streek J. Mercury: visualization and analysis of crystal structures // J. Appl. Cryst. 2006. Vol. 39. P. 453–457.
 10. Zlokazov V. B., Chernyshev V. V. MRIA a program for a full profile analysis of powder multiphase neutron-diffraction
- time-of-flight (direct and Fourier) spectra // J. Appl. Cryst. 1992. № 25. P. 447-451.

^{*} Работа поддержана Федеральной целевой программой «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы, ГК № П 415 от 30 июля 2009 года и Программой стратегического развития (ПСР) ПетрГУ в рамках реализации комплекса мероприятий по развитию научно-исследовательской деятельности на 2012–2016 гг.