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APPLICATION OF MAXWELL METHOD IN SOLUTION OF HOMOGENIZATION PROBLEM 
FOR ANIZOTROPIC ELASTIC MEDIA WITH ELLIPSOIDAL INCLUSIONS

The Maxwell method is applied to calculate effective elastic constants of matrix composite materials con-
taining a random set of anisotropic ellipsoidal inclusions. It is shown that the method allows derivation of 
analytical equations for effective elastic constants that coincide with the equations obtained by the Mori-
Tanaka method and other self-consistent methods known in literature. 
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INTRODUCTION
Intensive development of the theory of hetero-

geneous media in the past few decades is the result 
of a constantly increasing role of composite materi-
als in the modern industry. Nowadays, composites 
successfully compete with traditional homogeneous 
materials like metals, homopolymers and ceramics. 
Synthesis of composite materials requires compre-
hensive knowledge of infl uence of details of their 
microstructure on macro properties.

One of the important problems of the mechan-
ics of heterogeneous materials is the so-called ho-
mogenization problem. The solution of this problem 
allows replacing a heterogeneous material by a ho-
mogeneous one with the same response to external 
loading. Because exact solutions of the homogeni-
zation problem exist only for composites with very 
specifi c microstructures, various methods of ap-
proximate solution of this problem were proposed 
(the review of these methods may be found, e. g., 
in [8]). One of these methods belongs to J. C. Max-
well [9]. In application to the conductivity problem, 
the Maxwell method was discussed in details in [7], 
[8]. The method is based on the hypothesis of non-
interacting inclusions. But it is shown in [7] that the 
equations for the effective conductivity derived by 
the Maxwell method coincide with the ones obtained 
by other methods that apparently take into account 
the inclusion interactions. 

In his original work [9], Maxwell calculated ef-
fective conductivity of an isotropic medium with an 
array of isotropic spherical inclusions. In the second 
part of twentieth century, the Maxwell method was 
used for the calculation of the effective elastic con-
stants of the composites with spherical particles. For 
isotropic matrix and inclusion phases, the homog-
enization problem was solved by this method in [6]. 
It turned out that the method leads to the equations 
for the effective elastic constants that coincide with 

the ones obtained by other self-consistent methods 
(the effective fi eld method [4] and the Mori-Tanaka 
method [1], [10]).

In the present work, the Maxwell method is ex-
tended to the case of homogeneous anisotropic me-
dium containing a random set of ellipsoidal homo-
geneous anisotropic inclusions. It is shown that the 
Maxwell method is the most simple and straightfor-
ward way of deriving the equations for the effective 
elastic constants that coincide with the equations 
obtained by other self-consistent methods. 

THE MAXWELL SCHEME FOR ELASTIC 
COMPOSITES 

The Maxwell approach is based on the solution 
of the so-called one-particle problem. In the case of 
elasticity, it is the problem for an isolated inclusions 
in an infi nite homogeneous matrix subjected to a 
constant external fi eld.

 Let an infi nite elastic medium with the stiff-
ness tensor C0 contains an inhomogeneity (inclu-
sion) with the stiffness C0 + C1 in a fi nite region V 
with the characteristic function V(x) (V(x) = 1 when 
x ∈ V, V(x) = 0, when x ∉ V). The system of differ-
ential equations for the stress σij (x) and strain εij (x) 
tensors in such a medium is:

),()(),()()(),()( )( xuxxxCxxqx jiklklijklijiijj . (2.1)
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Here ui (x) is the displacement vector, the paren-
thesis in indices mean symmetrization. This prob-
lem may also be formulated in term of an integral 
equation for the strain fi eld in the medium with the 
inclusion [5]
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(2.2)

Here )(0 xij  is the external strain fi eld applied to the 
medium,
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Gik (x) is the Green ś function of the operator lijkljC
0  

for the unbounded elastic medium. This function is 
a vanishing at infi nity solution of the equation

)()(0 xxGC imkmlijklj , (2.4)

where δ  (x) is Dirac’s delta-function. 
Let the region V be ellipsoid with the semi-axes 

a1, a2, a3. If the external fi eld 0
ij is constant, then, 

according to Eshelby’s theorem [3], the strain fi eld 
ij  inside V is also constant and determined by the 

equation
)(, 110
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Here Iijkl = δi (k δl )) j   is the unit rank four tensor, Aijkl  (a) is 
the constant tensor that is presented as integral over 
the unit sphere Ω in the 3D-space
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In these equations, )(* kKijkl  is the Fourier trans-
form of the function Kijkl  (x) in equation (2.3), k is the 
Fourier transform parameter, and a = (aij) is a linear 
transformation that converts an ellipsoidal domain 
V into a unit sphere. For an isotropic medium, the 
function )(* kKijkl  has the form
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Where λ0 and μ   0 are the Lame constants of the me-
dium. The tensor Aijkl (a) in equations (2.5) has the 
symmetry of ellipsoid (orthorhombic symmetry) 
and is defi ned by 9 essential components. Explicit 
expressions for Aijkl (a) in the case of an arbitrary el-
lipsoid and its limit forms (oblate and prolate ellip-
soids) for some special symmetries of the tensor 0

ijklC  
can be found in [5].

Note that the integral equation similar to (2.2) can 
be derived for the stress tensor σij (x) in a homogene-
ous medium with an isolated inclusion. Multiplying 
the both sides of equation (2.2) by the tensor 0

ijklC  and 
taking into account the equivalences

)()(),()( 1xCxBxxB ijklijklklijklij , (2.8)
we obtain
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(2.9)

For the following obvious relations
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we fi nally yield the equation for the tensor σij (x) in 
the form
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If the external fi eld 0
ij is constant and the region 

V is ellipsoidal, the stress fi eld ij  inside the inclu-
sion is also constant and defi ned by the expressions
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(2.12)

Let us apply now the Maxwell scheme for the cal-
culation of the effective elastic stiffness tensor of the 
composite material with a random set of ellipsoidal 
inclusions with arbitrary anisotropy of the inclusion 
and matrix phases.

As in [7], we consider a large sphere VA of the 
radius RA that contains N “small” ellipsoidal inclu-
sions subjected to a constant external fi eld 0

ij applied 
to the heterogeneous medium. If this fi eld acts on 
every inclusion (inclusions don’t interact!), the fi eld 
inside the inclusions is defi ned by the expressions
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where the tensor Aijkl (ak) (k = 1, 2, ..., N) is given in 
equation (2.6) and the linear transformation ak de-
pends on the shape and orientation of the k-th ellip-
soidal inclusion.

The strain fi eld A
ij  

inside the homogeneous sphere 
VA with the effective stiffness tensor *

ijklC  of the com-
posite is
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where Aijkl is defi ned by the same formula (2.6), in 
which transformation aij 

is a unit tensor (aij=δ ij).
Far from the center of the large sphere, the distur-

bances of the strain fi eld induced by N small inclu-
sions and by the homogeneous large sphere are
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where Fijkl(n
A) is a tensor function on a unit sphere 

(its explicit expression is insignifi cant), vk is a vol-
ume of the k-th inclusion. Equating the fi elds )(' xij  
and )(´´ xij  we obtain the equation
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This equation may be rewritten in the form
1*1*1

rsklmnrsmnklijmnijkl CAICpP .
 (2.17)

Here p is the volume fraction of the inclusions, 
and it is denoted

3
4)(,)()(
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where averaging is performed over the ensemble 
distribution of the ellipsoid semi-axes and orienta-
tions.

The solution of equation (2.17) with respect to the 
effective moduli tensor *

ijklC  yields
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Note that in the case of multi-phase composites 
the tensor *

ijklC  is defi ned by the same formula (2.19), 
in which the averaging is performed over the en-
semble realizations of elastic property tensor 1

ijklC  in 
equation (2.18).

The same method allows deriving expression for 
the tensor of the effective elastic compliances *

ijklB  of the 
medium with a random set of ellipsoidal inclusions
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(2.21)

and Dijkl (a) is defi ned in (2.12).
Let the inclusions be spheres of a random radius 

a isotropically distributed in space. In this case 
Aijkl (a)=Aijkl (2.22)

and equation (2.19) is simplifi ed as follows
)1( 1110*

rsklmnrsmnklijmnijklijkl CApIpCCC . (2.23)

Suppose that the materials of the inclusions and 
the matrix are isotropic with the bulk K, K0 and shear 
μ, μ0 elastic moduli. Then, the equation (2.23) leads 
to the following expressions for the effective elastic 
moduli K* and μ∗
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The formulas for the effective compliances 1/K* 
and 1/μ∗

 may be obtained from (2.24), (2.25) or from 
the general formula (2.20).

As was mentioned above, in [6] (this work is of-
ten cited in geophysical community) a generaliza-
tion of the Maxwell scheme was proposed for the 
calculation of the effective dynamic properties of 
the matrix composites with isotropic host material 
and isotropic spherical and spheroidal inclusions. 
In the long-wave approximation, for the static bulk 
and shear effective elastic moduli of such materials, 
the authors obtained the expressions coincided with 
(2.24) and (2.25). By derivation of these equations a 
spherical form of the large region VA containing a set 
of small spheres was adopted. 

Note that in [6], the authors started with the solu-
tion of a plane elastic wave scattering problem on 
small and large spheres. Thus, the reader could sup-
pose that in [6], the solution of the dynamic homog-
enization problem would be presented at least in the 
long wave limit. But in result, the authors obtained 
only static effective bulk and shear moduli defi ned 
in equations (2.24) and (2.25), when frequency ω is 
equal to zero. As a matter of fact, when ω is not zero, 

the solution of the one-particle problems depends on 
new undimensional parameters: the ratio of the ex-
ternal wave length and the radius of small and large 
spheres. But the radius of the large sphere cannot be 
reasonably defi ned. Meanwhile in statics, the solu-
tion of the one-particle problem does not depend on 
the sphere radius. Hence, application of the Maxwell 
scheme for the solution of the dynamic homogeniza-
tion problem is impossible in principle.

In the considered examples, a spherical form of 
the large region VA was accepted. It was mentioned 
in [2] that taking an ellipsoidal form of the region VA 
it is possible to describe the properties of a broad-
er class of the composite materials. Naturally, the 
choice of the large ellipsoid is not unique. In the oth-
er words, possibility to vary the form of the region 
VA demonstrates ambiguity of the Maxwell scheme. 
But for some cases, this choice of a certain form of 
the large region may be justifi ed.

Let us consider a composite with isotropic ellip-
soidal inclusions of the same orientation. In spite of 
isotropy of the matrix phase the macro properties 
of the composite will be anisotropic. It seems rea-
sonable to take for the region VA not a sphere but an 
ellipsoid which aspect ratio and orientation coincide 
with those of the inclusions. In this case the Maxwell 
scheme leads to the following expression for the ef-
fective elastic stiffness tensor

)()1( 1110*
rsklmnrsmnklijmnijklijkl CaApIpCCC . (2.26)

DISCUSSION AND CONCLUSION
In [4], the self-consistent effective fi eld method 

was used for the construction of the tensor of the 
effective elastic moduli of the matrix composites 
containing a random set of ellipsoidal inclusions. An 
explicit expression for this tensor was obtained in 
the following form

10*
rsklijrsmnklijmnijklijkl PpAIpPCC . (3.1)

Here ijklA  is a constant tensor that is the following 
integral

)()( dxxxKA ijklijkl . (3.2)

Where Ф(x) is a specifi c correlation function that 
characterizes geometrical structure of the inclusion 
array (it determines the region in the vicinity of 
each inclusion where the probability of the presence 
of other inclusions is small). If this region has the 
symmetry of an ellipsoid, the integral (3.2) is cal-
culated explicitly. For a spherical region, when the 
centers of the inclusions are distributed homogene-
ously, ijklijkl AA , and expression (2.19) coincides with 
(3.1) obtained in the frame of the simplest variant 
of the effective fi eld method that takes into account 
interactions between the inclusions (the term in the 
square brackets in (3.1) is responsible for such inter-
actions). For isotropic matrix and isotropic spherical 
inclusions, formula (3.1) gives the expressions (2.24) 
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and (2.25) of the Maxwell method for the bulk and 
shear effective elastic moduli.

When all the inclusions are identical ellipsoids 
and their semi-axes are parallel (have the same ori-
entations), the equation (3.1) takes the form

)(
1110*

ijklijklijklijklijkl pAaACpCC . (3.3)

If the symmetry of the function Φ(x)coincides 
with the symmetry of a typical ellipsoid with the 
same aspect ratios the expression (3.3) is trans-
formed to

)()1(
1110* aApCpCC ijklijklijklijkl . (3.4)

This equation again coincides with (2.26) ob-
tained by the Maxwell approach.

Let us address now to the Mori-Tanaka method 
(MTM). In this method, the fi eld acting on every in-
clusion in the composite is assumed to be equal to 
the fi eld averaged over the matrix phase. This fi eld 
is different from the external fi eld applied to the 
composite material. Thus, in the MTM, interactions 
between the inclusions are taken into account. In the 
adopted notations, the MTM leads to the following 
expression for the tensor of the effective elastic stiff-
ness of the two-phase composite material with the 
ellipsoidal inclusions [4]

)()()( 1

00
0* xPxvAnIxvPnCC rsklmnrsmnklijmnijklijkl , (3.5)

where n0 is the numerical concentration of the inclu-
sions, v is the volume of the typical inclusions,

111 )()( rsklmnrsmnklijmnijkl CxAICxP . (3.6)

And Aijkl  (x) is the constant tensor Aijkl  (ak) when x ∈ νk 
Generally speaking, the equation (3.5) differs from 
(3.1) and (2.26), but for the composite with the aligned 
ellipsoidal inclusions formula (3.5) gives the same 
result as (3.1) and (2.26). For the isotropic phase ma-
terials and spherical inclusions, equation (3.5) leads 
to the expressions (2.24) and (2.25) of the Maxwell 
method for the bulk and shear effective moduli.

It is necessary to emphasize that the Maxwell 
method allows deriving equations for the effective 
elastic moduli of the composite materials in the 
most economic fashion. The advantage of the ef-
fective fi eld method [4] is in the possibility to take 
into account the peculiarities of spatial distribution 
of the inclusions by introducing a specifi c correla-
tion function of a random fi eld of the inclusions. It is 
equivalent to justifi cation of the choice of the form 
of the large region in the Maxwell method. But in-
side the original Maxwell scheme, the form of this 
region cannot be defi ned uniquely. 
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