Сентябрь, № 6

Технические науки

2010

УДК 539.26; 547.458.81

ЛЮДМИЛА АЛЕКСАНДРОВНА АЛЕШИНА

кандидат физико-математических наук, профессор кафедры физики твердого тела физико-технического факультета, Петрозаводский государственный университет *aleshina@psu.karelia.ru*

ИННА ВЛАДИМИРОВНА ЛЮХАНОВА

аспирант кафедры физики твердого тела физикотехнического факультета, Петрозаводский государственный университет luhanova@yandex.ru

РЕНТГЕНОГРАФИЧЕСКИЕ ИССЛЕДОВАНИЯ ВЗАИМОДЕЙСТВИЯ ТЕХНИЧЕСКИХ ЦЕЛЛЮЛОЗ С ВОДОЙ

Рентгенографические исследования взаимодействия целлюлозы с водой показали, что при набухании целлюлозы вода проникает в капиллярно-пористую систему и аморфную составляющую целлюлозы. Это приводит к уменьшению угла взаимной дезориентации молекул.

Ключевые слова: рентгенографический анализ, целлюлоза, набухание в воде

введение

Изучение сорбционных свойств целлюлозы представляет большой теоретический и практический интерес, так как дает возможность не только охарактеризовать структурные изменения волокна, но и выяснить влияние сорбированных жидкостей, в частности воды, на химическое поведение, механические свойства и электрические характеристики целлюлозы [1].

На сегодняшний день не существует единой теории механизма протекания сорбционных процессов, характерных для гидрофильных полимеров биологического происхождения, к которым относится целлюлоза [4]. Одним из путей решения вопроса о механизме сорбции воды целлюлозой является исследование изменений молекулярной и надмолекулярной структуры целлюлозы при взаимодействии с водой методом рентгеноструктурного анализа.

ИССЛЕДУЕМЫЕ ОБРАЗЦЫ

В качестве объектов исследований были выбраны хлопковая, бисульфитная кондопожская (К) и сульфатные светогорская (С) и финская (Ф) целлюлозы. Волокна исследуемых образцов целлюлозы располагались параллельно поверхности образца. Исследовались образцы в исходном (сухом) состоянии и насыщенные водой. Насыщение водой происходило путем набухания при комнатной температуре в течение 2–3 часов.

За время рентгенографирования всего интервала углов рассеяния 3–145° (S = 0.3–6.15 Å⁻¹) изменение массы набухших в воде образцов не превышало 3 %. Контроль изменения массы проводился при помощи аналитических электронных весов Госметр ВЛ-210.

МЕТОДИКА ЭКСПЕРИМЕНТА И ОБРАБОТКИ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Рентгенограммы образцов целлюлозы были получены на дифрактометре ДРОН-3.0 в геометриях на отражение и на прохождение на FeK_{α}-излучении с монохроматизацией падающих лучей кристаллом пиролитического графита. Рентгенограмма дистиллированной воды была получена на рентгеновском дифрактометре SAXSees mc² фирмы Anton Paar на CuK α -излучении.

В измеренные в эксперименте распределения интенсивности рассеяния образцами $I_{\text{изм}}(S)$ (S = $4\pi \times \sin\theta/\lambda$ – длина дифракционного вектора, θ – угол скольжения, λ – длина волны падающего излучения) была введена поправка на рассеяние воздухом. Рассеяние воздухом $I_{\text{возд}}(S)$ измерялось в отсутствие образца, для тонких образцов в геометрии на отражение к стандартной величине поправки, равной 0,5 $I_{\text{возд}}(S)$, добавлялось слагаемое

$$\frac{1}{2}I_{BO3D}(S)\exp(\frac{-2\mu_{m}\rho \cdot t}{\sin\theta}),$$

где μ_m – массовый коэффициент поглощения, ρ – плотность, t – толщина образца. Таким образом, поправка на рассеяние воздухом $I_{\scriptscriptstyle B}(S)$ в геометрии на отражение имеет вид:

$$I_{B}(S) = \frac{1}{2} I_{BO3Д.}(S) [1 + \exp(\frac{-2\mu_{m}\rho \cdot t}{\sin\theta})].$$
(1)

В геометрии на прохождение с учетом поглощения в образце интенсивность рассеяния воздухом записывалась в виде:

$$I_{B}(S) = I_{BO3Д.}(S) \exp(\frac{-\mu_{m}\rho \cdot t}{\cos\theta}).$$
 (2)

Исправленные на рассеяние воздухом собственный фон регистрирующей системы (с. ф.) и поглощение интенсивности рассеяния $I_0(S)$ в геометрии на отражение записываются как

 $I_0(S) = 2\mu_m \rho(I_{\mu_{3M}}(S) - I_B(S) - c.\phi.)/(1 - exp(-2\mu_m \rho t/sin\theta)).$ (3)

В случае геометрии на прохождение

 $I_0(S) = (\cos\theta/t)(I_{\mu_{3M}}(S) - I_{B}(S) - c.\phi.)/(\exp(-\mu_m\rho t/\cos\theta)).$ (4)

В полученные значения интенсивности $I_0(S)$ была введена поправка на поляризацию, затем они были переведены в электронные единицы на формульную единицу (эл. ед.) и исправлены на комптоновское рассеяние. Коэффициент нормировки рассчитывался по методу Крог – Мое и Нормана. Полученные в результате значения интенсивности рассеяния в эл. ед. обозначены $I_{норм.}(S)$. Методика обработки данных подробно изложена в [3]. Из интегральных интенсивностей отражений и диффузного фона аморфной составляющей рентгенограмм рассчитывались значения степени кристалличности (СК):

$$k = \frac{I - I_a}{I},$$
(5)

где I – суммарная интегральная интенсивность рассеяния кристаллической и аморфной фазами, I_a – интенсивность рассеяния аморфной фазой.

Из ширины дифракционных линий по формуле Шеррера [9] рассчитывались размеры областей когерентного рассеяния (ОКР), иногда называемых областями кристалличности, в направлении нормали к отражающим семействам плоскостей [9]. Контуры линий аппроксимировались по Гауссу.

Рис. 1. Экспериментальные кривые распределения интенсивности рассеяния для исходных — и набухших в воде ····· образцов: Ф (aI, aII), С (бІ, бІІ), К (вІІ) и хлопковая (гІІ) целлюлозы. Геометрия на прохождение – І, на отражение – ІІ

Для определения значений относительной влажности образцов, а также для определения количества воды, внедренной в образец при его набухании, образцы взвешивались до и после набухания в воде на аналитических электронных весах Госметр ВЛ-210 (предел допустимой по-грешности – ±0.0005 г, наименьший предел взвешивания – 0.001 г). Из результатов измерений массы образцов до (m) и после (m₁) набухания в воде были рассчитаны относительная влажность

$$W_{\rm C} = \frac{\mathrm{m}_1 - \mathrm{m}}{\mathrm{m}_1} \cdot 100\%$$

и число молекул воды $N_{H_2O} = (m_1 - m)/M_{H_2O}$ в набухших образцах (M_{H_2O} – масса молекулы воды). Число молекул целлюлозы в образцах рассчитывалось как $N_{uenn} = m/M_{C_6O_5H_{10}}$. Здесь $M_{C_6O_5H_{10}}$ – масса молекулы целлюлозы. Формульная единица, используемая для расчета нормированных интенсивностей рассеяния, записывалась таким образом, чтобы число атомов C оставалось равным 6.

Для определения плотности р исследуемых объектов были проведены измерения толщины и площади поверхности образцов в исходном состоянии и после набухания в воде.

Из значений плотности и разности масс m₁-т были рассчитаны объемы поглощенной образцами воды (V_{H,O}).

РЕЗУЛЬТАТЫ РЕНТГЕНОГРАФИЧЕСКОГО ЭКСПЕРИМЕНТА

На рис. 1 сравниваются кривые распределения интенсивности рассеяния $I_{\mu_{3M}}(S)$ исходными и набухшими в воде образцами. Указаны индексы основных отражений.

Анализ рентгенограмм, приведенных на рис. 1, показывает, что на дифракционных картинах, полученных от образцов целлюлоз, пропитанных водой, наблюдается уменьшение интенсивности рассеяния в области отражений ($\overline{110}$), (110) и (200) в области S~1.5 Å⁻¹ ($2\theta_{Fe}$ ~27°) и возрастание интенсивности диффузного рассеяния в области З~2 Å⁻¹ ($2\theta_{Fe}$ ~36°).

Уменьшение интенсивности рассеяния в области отражений (Ī10), (110) и (200) обусловлено возрастанием поглощения в образцах за счет заполнения капиллярной системы целлюлозы водой и разбухания целлюлозы. Причиной возрастания интенсивности диффузного рассеяния является появление рассеяния водой, максимум которого приходится на S~2 Å⁻¹ (2 θ_{Fe} ~36°) (рис. 2).

При набухании целлюлозы в воде значение относительной влажности W_C составляет выше 20 % (табл. 1), то есть выше предела совместимости целлюлозных волокон с водой [8]. Вода, поглощаемая сверх предела ее совместимости с волокнами, начинает заполнять систему межволоконных макропор. При этом картина рассеяния представляет собой суперпозицию дифракционных картин от трех компонент системы:

кристаллической и аморфной составляющих целлюлозы и воды, заполняющей межволоконные промежутки.

Рентгенограммы сульфатных Φ и С целлюлоз были получены в двух геометриях: на прохождение (рис. 1 al и бl соответственно) и на отражение (рис. 1 all и бll соответственно). Как видно из представленных рентгенограмм, на дифракционных картинах, полученных на прохождение, резко ослаблены максимумы с индексами (I10), (110) и (200), но наблюдается линия с индексами (004). Причина различия в интенсивностях брэгговских отражений на рентгенограммах, полученных на прохождение и отражение, кроется в волокнистой структуре исследованных образцов и методике их ориентации относительно падающих лучей, что подробно изложено в [2].

Результаты определения толщины t и массы (m, m_1) образцов, а также расчета плотности ρ , числа молекул целлюлозы $N_{\text{целл}}$ и воды N_{H_2O} , элементного состава (x_C, x_O, x_H) , объемов и относительной влажности W_C приведены в табл. 1.

Значения плотностей для образцов целлюлозы в исходном (сухом) состоянии изменяются от 0.25 г/см³ для хлопковой до 0.74 г/см³ для сульфатной Ф целлюлозы. Для образцов, набухших в воде, плотность принимает значения от 1.25 до 1.48 г/см³.

Увеличение плотности образцов, насыщенных водой, по сравнению с плотностями образцов в исходном состоянии можно объяснить тем, что, согласно литературным данным [5], в процессе набухания целлюлозы вода проникает в капилляры и приводит к повышению плотности упаковки системы в целом. Это связано с характерным для процесса набухания полимеров явлением контракции [5], при котором объем набухшей целлюлозы оказывается меньше суммы объемов исходной (сухой) целлюлозы (V_{исх}) и поглощенной воды, что и наблюдается в данном эксперименте (табл. 1).

Таблица 1

пекоторые физические характеристики образцов целлюлозы												
Образец	р, г/см ³	t, см	m, m ₁ , г	V _{cH2} O, см ³	$V_{\text{исх}}$ + $V_{\text{H}_2\text{O}}$, см ³	N _{целл} , 10 ²⁰	N _{H2} O, 10 ²⁰	$\frac{N_{\rm H_2O}}{N_{\rm целл}}$	x _C	X _O	x _H	Wc%
Сульфат. (Ф) исх.	0.74 ± 0.06	0.045 ± 0.002	0.189 ± 0.009			7			6	5	10	
c H ₂ O	1.37 ± 0.05	0.055 ± 0.004	0.421 ± 0.011	0.315	0.494	7	77	11	6	16	32	56
Сульфат. (С) исх.	0.67 ± 0.03	0.032 ± 0.007	0.182 ± 0.003			6			6	5	10	
c H ₂ O	1.48 ± 0.08	0.063 ± 0.012	0.512 ± 0.007	0.415	0.697	7	97	16	6	21	42	65
Бисульф. (К) исх.	0.30 ± 0.01	0.097 ± 0.002	0.131 ± 0.002			5			6	5	10	
c H ₂ O	1.25 ± 0.03	0.109 ± 0.002	0.612 ± 0.001	0.481	0.899	7	157	31	6	36	72	78
Хлопковая исх.	0.25 ± 0.01	0.042 ± 0.007	0.024 ± 0.002			1			6	5	10	
c H ₂ O	1.39 ± 0.04	0.032 ± 0.001	0.096 ± 0.001	0.071	0.165	7	32	32	6	37	74	76

Рис. 3. Нормированные кривые распределения интенсивности рассеяния для исходных — и набухших в воде ····· образцов: Ф (а I, а II) и С (б I, б II), К (в II) и хлопковой (г II) целлюлоз. Геометрия на прохождение – I, на отражение – II

На рис. 3 представлены кривые распределения интенсивности $I_{\text{норм}}(S)$, нормированные на формульные единицы, элементный состав которых указан в табл. 1.

Для выявления структурных изменений, происходящих в целлюлозе при набухании, из кривых распределения интенсивности образцов целлюлозы, набухших в воде, было исключено рассеяние водой с учетом числа ее молекул в образцах (табл. 1). Результирующие дифракционные картины представлены на рис. 4.

Рис. 4. Кривые распределения нормированных значений интенсивности для исходных — образцов; для набухших в воде …… образцов после исключения вклада воды в рассеяние: Ф (а I, а II), С (б I, б II), К (в II). Геометрия: на прохождение – I, на отражение – II

Таблица 2 Отношения высот отражений (110), (110), (200) и (004) для исходных (1исх) и набухших в воде (Ic H₂O) образцов целлюлозы

Образец целлюлозы	Геометрия съемки	$\frac{I_{cH_2O}^{\overline{1}10}}{I_{ucx}^{\overline{1}10}}$ $S = 1.04$ A^{-1}	$\frac{I_{cH_2O}^{110}}{I_{ucx}^{110}}$ S = 1.17 Å ⁻¹	$\frac{I_{cH_2O}^{200}}{I_{ucx}^{200}}$ S = 1.6 Å ⁻¹	$\frac{I_{cH_2O}^{004}}{I_{ucx}^{004}}$ S = 2.4 Å ⁻¹
Сульфат. (Ф)	Отражение	1	0.95	1.32	1
Сульфат. (С)	Отражение	0.77	0.91	1.32	1.1
Бисульфит. (К)	Отражение	0.83	1	1.2	1.4

В табл. 2-4 представлены количественные характеристики, рассчитанные из приведенных

на рис. 3 кривых распределения интенсивностей рассеяния.

Как видно из табл. 2, для всех исследованных образцов целлюлозы, насыщенных водой, наблюдается возрастание интенсивности отражения с индексами (200). Аналогичные результаты были получены в [8] для хлопковой целлюлозы. В работах [7], [8] этот эффект объясняется повышением упорядоченности структуры, которое вызвано заполнением водой дефектов кристаллической структуры.

Расчет межплоскостных расстояний d из положений на рентгенограммах, соответствующих отражениям (110), (110, (200), (004) кристаллической фазы, показал, что в набухших образцах значения d не отличаются от таковых для исходных (табл. 3).

Результаты расчета степени кристалличности и размеров ОКР приведены в табл. 4.

Таблица 3

Межплоскостные расстояния для исходных образцов целлюлозы (числитель) и образцов целлюлозы, набухших в воде (знаменатель)

Тип целлюлозы	Межплоскостные расстояния						
	d1 (1 10), Å	d2 (110), Å	d3 (200), Å	d4 (004), Å			
Cumber (D)	5.98 ± 0.01	5.46 ± 0.01	3.95 ± 0.02	2.62 ± 0.02			
Сульфан. (Ф)	5.98 ± 0.02	5.46 ± 0.02	3.95 ± 0.02	2.62 ± 0.02			
$C_{2} = \frac{1}{2} \left(C \right)$	6.03 ± 0.01	5.43 ± 0.01	3.95 ± 0.02	2.61 ± 0.02			
Сульфат. (С)	6.03 ± 0.02	5.44 ± 0.01	3.95 ± 0.02	2.61 ± 0.02			
F (I/)	6.03 ± 0.01	5.43 ± 0.01	3.95 ± 0.02	2.59 ± 0.02			
Бисульфит. (К)	6.03 ± 0.01	5.42 ± 0.01	3.95 ± 0.02	_			
V	6.05 ± 0.02	5.39 ± 0.01	3.94 ± 0.03	2.63 ± 0.01			
АЛОШКОВАЯ	6.05 ± 0.02	5.39 ± 0.01	3.94 ± 0.03				

Таблица 4

Степень кристалличности и размеры ОКР исследованных образцов целлюлозы

Образон наявнаясы.	CV (04)	Размер кристаллитов, D _{hkl}					
Образец целлюлозы	CK (%)	(Å), в направлениях					
		[100]	[001]				
Ф исходная	78	48	45				
Ф после набухания	83	47	45				
С исходная	77	48	42				
С после набухания	82	47	41				
К исходная	80	39	48				
К после набухания	80	39	_				
Хлопковая исх.,	79	63	53				
после набухания	82	65	_				
Расчет из ширины от	гражений	(200)	(004)				
ACV = + 2.0/AD = -	- 5 Å		•				

 $\Delta CK = \pm 3 \%$, $\Delta D_{hkl} = \pm 5 A$

Как видно из табл. 4, все исследованные исходные образцы целлюлозы имеют одинаковую в пределах погрешности СК. Следует отметить, что значение СК хлопковой целлюлозы совпадает с литературными данными [7], [8]. После взаимодействия с водой СК сульфатных С и К целлюлоз возрастает примерно на 5 %. Этот результат незначительно выходит за предел погрешности эксперимента.

В исходных образцах исследованных целлюлоз размер ОКР в направлении оси волокна ([001]) составляет $42 \div 53$ Å, то есть равен 4–5 целлобиозным фрагментам. Это значение соответствует приводимым в литературе данным о длине микрофибрилл [6].

Наибольший поперечный размер (направление [100]) имеют микрофибриллы хлопковой целлюлозы (63 Å, то есть ~8 элементарных ячеек). Наименьший поперечный размер имеют бисульфитной микрофибриллы целлюлозы (39 Å, то есть ~5 элементарных ячеек).

Взаимодействие с водой не приводит к изменениям размеров областей кристалличности.

Таким образом, размер ОКР в направлениях [100] и [001] фактически соответствует толщине и длине упорядоченных областей элементарных фибрилл и не меняется в набухшей в воде целлюлозе. Практически не изменяется и СК. Данные результаты согласуются с высказываемыми в литературе предположениями о том, что проникновению воды и набуханию наиболее доступны аморфные области целлюлозы [5], [8]. Набухание аморфной целлюлозы приводит к появлению дополнительного рассеяния на «хвосте» отражения (200) (рис. 4). Возрастание интенсивности данного отражения в набухшей целлюлозе можно объяснить уменьшением угла взаимной дезориентации целлюлозных микрофибрилл при увеличении плотности их упаковки в результате заполнения капиллярно-пористой структуры целлюлозы водой.

Работа выполнена при поддержке федеральной целевой программы «Научные и научнопедагогические кадры инновационной России» на 2009–2013 годы, ГК № П 415 от 30.07.09, а также гранта РФФИ «Север» № 08-02-98802.

СПИСОК ЛИТЕРАТУРЫ

- 1. Авакова О. Г., Боголицин К. Г. Растительная клетчатка: структура, свойства, применение // Известия вузов. Лесной журнал. 2004. № 4. http://www.agtu.ru/hpd_2004_4/sx/art/316249/cp/1/br/316219/discart/316249.html (дата обращения: 18.10.2009)
- 2. Алешина Л. А., Мелех Н. В., Фофанов А. Д. Исследование структуры целлюлоз и лигнинов различного происхождения // Химия растительного сырья. 2005. № 3. С. 31–59.
- 3. Алешина Л. А., Фофанов А. Д. Рентгеноструктурный анализ аморфных материалов. Петрозаводск: Изд-во ПГУ, 1987. 85 с.
- Грунин Ю. Б., Смотрина Т. В., Грунин Л. Ю., Лежнина М. М., Гогелашвили Г. Ш., Грунина Н. Г., Красильникова С. В. Возможности ЯМР в анализе структурных и сорбционных 4. свойств биополимеров // Химия и компьютерное моделирование. Бутлеровские сообщения. 2001. N_{\odot} 4. http://chem.kstu.ru/butlerov_comm/vol1/cda1/data/JCHEM&CS/RUSSIAN/n4/appl4/yal2000/0sdms41/0sdms41.htm (дата обращения 18.10.2009)
- 5. Дулькин Д. А., Южанинова Л. А., Миронова В. Г., Спиридонов В. А. Интенсификация процессов разволокнения макулатуры и последующего размола полученной массы // Известия вузов. Лесной журнал. 2005. № 1-2. С. 104-123.
- 6. Комаров В. И. Деформация и разрушение волокнистых целлюлозно-бумажных материалов. Архангельск: Издво Архангельского гос. техн. ун-та, 2002. 440 с. Якунин Н. А., Завадский А. Е. Изменение структуры аморфной фазы хлопковой целлюлозы при взаи-
- 7. модействии с парами воды // Высокомолекулярные соединения. Сер. А. 2004. Т. 46. № 6. С. 1023–1029.
- Якунин Н. А., Завадский А. Е., Морыганов А. П. Изменение надмолекулярной структуры хлопковых волокон при сорбции паров воды // Высокомолекулярные соединения. Сер. А. 2003. Т. 45. № 5. С. 767–772.
- Thygesen A., Oddershede J., Lilholt H., Thomsen A. B., Stahl K. On the determination of 9 crystallinity and cellulose content in plant fibres // Cellulose. 2005. № 12. P. 563–576.