Июнь, № 4 Медицинские науки 2010

УДК 616-002.77

ЮРИЙ МИХАЙЛОВИЧ МАРКЕЛОВ

кандидат медицинских наук, доцент курса фтизиопульмонологии медицинского факультета, Петрозаводский государственный университет

markelov@psu.karelia.ru

ЛЮДМИЛА ВЛАДИМИРОВНА ЩЕГОЛЕВА

кандидат технических наук, доцент, и. о. заведующего кафедрой прикладной математики и кибернетики математического факультета, Петрозаводский государственный университет schegoleva@psu.karelia.ru

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РАСПРОСТРАНЕНИЯ БАЦИЛЛЯРНОГО ТУБЕРКУЛЕЗА

На основе данных статистики о динамике бациллярных больных создана математическая модель формирования «бациллярного ядра». Результаты, полученные с использованием математической модели распространения бациллярного туберкулеза, совпадают с известной эпидемиологической моделью и подтверждают, что общая медицинская сеть выявляет всего лишь около 45 % находящихся на территории Карелии бациллярных больных, а также положение стратегии DOTS о том, что регрессию «бациллярного ядра» можно получить при выявлении не менее 70 % бациллярных больных и абациллирования не менее 85 % выявленных больных.

Ключевые слова: невыявленные бациллярные больные, математическая модель, прогнозирование эпидемиологической ситуации по туберкулезу

Известно, что наиболее значимым фактором распространения туберкулеза (ТБ) в обществе является сохранение значительного количества бациллярных больных [2]. В связи с этим, согласно принятой BO3 стратегии DOTS, для улучшения эпидемиологической ситуации по ТБ необходимо ежегодно выявлять не менее 70 % бациллярных больных и излечивать (абациллировать) не менее 85 % из них [7], [9]. Условно бациллярных больных можно поделить на три группы: впервые выявленных (зарегистрированных) больных; больных, ранее выявленных, но неэффективно пролеченных (контингентов-бактериовыделителей), продолжающих, как правило, выделять лекарственно-устойчивые штаммы микробактерий туберкулеза (МБТ); невыявленных и незарегистрированных на данной территории бациллярных больных [2]. Анализ многолетней динамики заболеваемости ТБ в Республике Карелия показал, что даже в относительно благоприятный период

(1980-е годы) кривая заболеваемости имела волнообразный характер, что свидетельствует о недовыявлении значительного числа бациллярных больных, являющихся источниками заражения и возникновения новых случаев ТБ. Согласно наиболее крупномасштабному исследованию с участием 86 экспертов ВОЗ, охватившему 212 стран [6], в 1997 году в России выявлялось менее 50 % случаев ТБ с бактериовыделением. Ряд показателей свидетельствует о сохранении в Республике Карелия более неблагоприятной, чем в России, эпидемиологической ситуации по ТБ [4], [5]. О поздней диагностике и невыявлении значительной части больных свидетельствуют высокий удельный вес деструктивных форм ТБ среди впервые выявленных больных в Республике Карелия, превышающий в 2008 году на 30 % аналогичный показатель по РФ (62,8 % в PK, 46,8 % в РФ), высокая смертность от ТБ среди населения, превышающая аналогичный показатель по Северо-Западу РФ на 24 %, а также высокий удельный вес умерших в течении 1 года с момента выявления ТБ, превышающий аналогичный показатель по РФ в 1,5–2 раза (рис. 1).

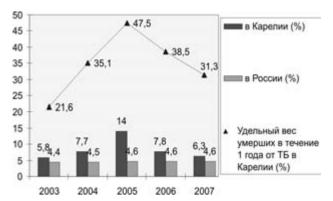


Рис. 1. Удельный вес умерших в течение 1 года с момента выявления ТБ среди впервые выявленных больных (в Карелии и России), 2003—2007 годы (в %)

Целью данной работы явилось выяснение количества невыявленных бациллярных больных и создание математической модели распространения бациллярного ТБ для прогнозирования эпидемиологической ситуации по ТБ и оценки влияния на нее различных факторов. На основе анализа 306 историй болезни больных легочным ТБ и статистических данных о количестве зарегистрированных бациллярных больных и их динамике в 2000-2007 годах (отчетные ф. 33, табл. 2400 и ф. 8), а также известного положения о том, что один бациллярный больной в течение года инфицирует 10 человек, из которых у 10 % разовьется заболевание ТБ, из них у 50 % с бацилловыделением (0,5 случая) [3], [8], нами была разработана математическая модель расчета количества бациллярных больных в регионе.

В таблице представлено движение бациллярных больных по статистической отчетной форме (ф. 33, табл. 2400) для Республики Карелия. Как видно из таблицы, в среднем количество впервые выявленных бациллярных больных по территории (241,8) на 15–16 % превышало количество бациллярных больных из числа местных жителей (203,9). Как правило, эта категория представлена бомжами, мигрантами, а также находящимися в СИЗО или в местах лишения свободы (МЛС) больными. В данной категории граждан, как правило, выявляются запущенные, распространенные деструктивные формы ТБ. Эти больные также склонны к нарушениям режимов химиотерапии (XT) и отрывам от лечения, заканчивающимся неэффективным курсом XT. Отрывы от лечения, по данным разных авторов, колеблются от 10 до 20 % (по статистическим данным, в Карелии отрывы от лечения составляют около 10 % (B = 0,1)). Несмотря на это, данная группа, пополняя ряды контингентов-бактериовыделителей, не имея регистрации, не попадает в диспансерные группы наблюдаемых бациллярных больных (ф. 33, табл.

2400) (см. таблицу). Как видно из таблицы, летальность бациллярных больных составила 21 % (116,5 от 552,9), в том числе 14 % от ТБ (77,3 от 552,9) и 7 % от других причин (39,3 от 552,9). Летальность впервые выявленных бациллярных больных составила 11,3 % от ТБ и 7 % от других причин ($C_b = 0.18$), абациллирование – 66 % ($V_b =$ 0,66). Пополнение бактериовыделителей из числа контингентов, состоящих на диспансерном учете (ΠY) , осуществлялось из I и II групп $\Pi Y - 11.2 \%$ (39 из 349,3) (A1 = 0,112), рецидивы составили 7,6% (26,4 из 349,3) (A2 = 0,076). Количество прибывших из других регионов и убывших различалось незначительно. Удельный вес контингентов, снятых с бациллярного учета (в связи со смертью и абациллированием), составил 25,6 % (A3 = 0.25). Коэффициент заболевания бациллярной формой ТБ (Z = 0.5) взят из общепринятой модели распространения ТБ: 1 бациллярный больной в течение года инфицирует 10 человек, из которых 10 % (1 чел.) заболевают ТБ (из них 50 %, или 0,5 случаев, – бациллярным ТБ). Известно также, что в доантибактериальный период, до применения туберкулостатических препаратов, около 1/3 больных умирало от ТБ ($C_n = 0.33$), у 1/3 процесс переходил в хроническую форму, у 1/3 наступало самоизлечение ($V_n = 0.33$). Математическая модель распространения бациллярных форм ТБ может быть представлена системой конечно-разностных уравнений:

$$\begin{cases} S(t+1) = S(t) - S_b(t) - \\ -S_y(t) + S_b(t) \cdot \left(B \cdot Z + (1-B) \cdot Z \cdot W\right) + \\ +S_n(t) \cdot Z + S_x(t) \cdot (1+A1+A2) \cdot Z \\ S_y(t) = S_n(t) \cdot (V_n + C_n) = (1-K) \cdot S(t) \cdot (V_n + C_n) \\ S_x(t+1) = S_x(t) \cdot (1+A1+A2) \cdot (1-A3) + S_b(t) \cdot B + \\ +S_b(t) \cdot (1-C_b - V_b - B) \cdot (1-U) \\ S_b(t) = K \cdot S(t) \\ S_n(t) = (1-K) \cdot S(t) \end{cases}$$

где $S_x(t)$ — количество хронических больных на конец года t; $S_n(t)$ — количество невыявленных больных в году t; $S_b(t)$ — количество выявленных больных в году t; $S_y(t)$ — количество ушедших из невыявленных больных (умерших и выздоровевших) в году t; S(t) — количество всех неизвестных больных в году t; W — поправочный коэффициент заразности для выявленных больных W=0.195; W=0.195

Неизвестный коэффициент выявления К был рассчитан исходя из модели на основе статистических данных о количестве впервые выявленных больных и количестве контингентов за 2000–2007 годы и составил 0,45.

Год	Впервые выявленные с МБТ (+)		Контингенты с МБТ (+) (ф. 33)							Умерло			Перестали выделять МБТ	Всего состоит на ко-
	Всего на территории РК (ф. 8)	Из них местные жители (ф. 33)	l	Из I и II групп ДУ (ранее абациллиро- ванных)	Р€ Из III группы ДУ		Всего	Прибыло из других ЛПУ		ТБ	От других причин		MD1	на ко- нец года с МБТ (+)
2000	239	176	422	48	4	11	15	71	47	53	30	80	125	598
2001	234	187	391	36	4	10	14	54	52	81	35	116	143	578
2002	248	193	362	55	7	30	37	49	61	98	38	136	159	555
2003	249	216	342	41	3	14	17	50	47	86	44	130	139	558
2004	239	200	343	31	13	19	32	35	56	60	45	105	153	542
2005	249	220	341	40	13	21	34	46	50	86	40	126	145	561
2006	235	211	313	35	18	11	29	39	40	74	48	122	189	524
2007	241	226	281	26	12	21	33	30	44	80	34	114	174	507
Средние М	241,8	203,6	349,3	39,0	9,3	17,1	26,4	46,8	49,6	77,3	39,3	116,5	153,4	552,9

Движение бациллярных больных в Республике Карелия (2000-2007 годы, учетные формы; ф. 8, ф. 33, табл. 2400)

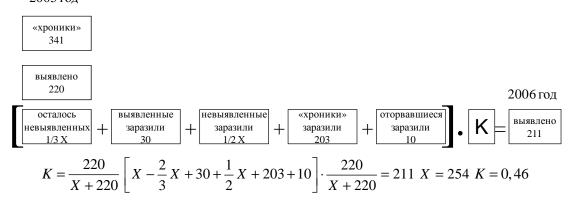


Рис. 2. Расчет количества невыявленных бациллярных больных в 2005 году

Пример расчета числа невыявленных больных в 2005 году представлен на схеме (рис. 2). Примем за X количество неизвестных больных текущего года. Тогда формирование бациллярных больных следующего года будет осуществляться за счет суммирования следующих групп: невыявленные бациллярные больные предыдущего года (1/3X); заразившиеся от впервые выявленных бациллярных больных; заразившиеся от невыявленных бациллярных больных предыдущего года (1/2X); заразившиеся от «хроников»; заразившиеся от «оторвавшихся от лечения». Зная количество впервые выявленных больных следующего года, можно рассчитать количество неизвестных больных и коэффициент выявления.

Таким образом, при величине коэффициента выявления ($K_{cp}=0,45$) (то есть при выявлении менее 1/2 из находящихся на территории региона бациллярных больных) расчетные данные, полученные на основании разработанной математической модели, и статистические данные совпадают (рис. 3).

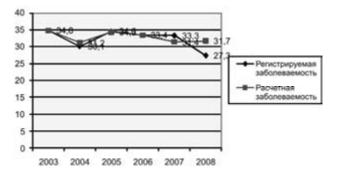


Рис. 3. Регистрируемая и расчетная заболеваемость с МБТ (+) на 100 тыс. населения при выявлении 45 % бациллярных больных на территории Карелии, 2003—2008 годы

Наши данные совпадают с результатами исследования, полученными в работе [6]. Анализ математической модели показал, что определяющую роль в увеличении «бациллярного ядра» и возникновении новых случаев бациллярного ТБ играют контингенты-бактериовыделители, формирующиеся в результате неэффективного лечения бациллярных форм ТБ. Как следует из созданной

математической модели, снижение показателя абациллирования впервые выявленных бациллярных больных в течение последних 3 лет (2005 год -51,6%, 2006-й -55,4%, 2007-й -58,3%) в среднем до 55 % приведет в ближайшие годы к значительному ухудшению эпидемиологической ситуации: к увеличению контингентов-бактериовыделителей («хроников»), выделяющих, как правило, лекарственно-устойчивые штаммы МБТ, а также к замедлению регрессии количества как впервые выявленных, так и невыявленных бациллярных больных.

С учетом рекомендаций ВОЗ (стратегия DOTS) о необходимости достижения показателя абациллирования в 85 % и выявления не менее 70 % бациллярных больных ввод данных коэффициентов в полученную математическую модель показывает, что достижение этих индикаторов позволяет добиться наибольшей регрессии количества бациллярных больных на территории региона (рис. 4).

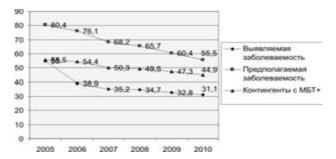


Рис. 4. Динамика заболеваемости с МБТ (+) на 100 тыс. населения при введении индикаторов ВОЗ (выявление – 70 %; абациллирование – 85 %) в математическую модель

Это также приведет к снижению летальности впервые выявленных больных, поскольку основной причиной летальности данной категории является позднее выявление запущенных, деструктивных форм ТБ, а также к сокращению числа

контингентов-бактериовыделителей. Таким образом, полученная математическая модель совпадает с известной эпидемиологической моделью распространения туберкулезной инфекции в обществе, данными, полученными в [6], [8], и подтверждает, что общая лечебная сеть выявляет менее 1/2 от имеющегося количества бациллярных больных на территории региона.

выводы

- Созданная математическая модель позволяет прогнозировать эпидемиологическую ситуацию по туберкулезу в зависимости от абациллирования и летальности впервые выявленных больных и контингентов, отрывов от лечения и эффективности лечения больных с множественной лекарственной устойчивостью.
- Результаты, полученные с использованием математической модели распространения бациллярного туберкулеза, совпадают с известной эпидемиологической моделью и подтверждают, что общая медицинская сеть выявляет всего лишь около 45 % находящихся на территории Карелии бациллярных больных.
- Снижение показателя абациллирования впервые выявленных больных в течение последних 3 лет в среднем до 55 % может привести на территории Карелии к ухудшению эпидемической ситуации - к увеличению контингентов-бактериовыделителей («хроников»), что неизбежно приведет к увеличению бациллярных больных в регионе и росту первичной лекарственной устойчивости.

Использование полученной математической подтверждает положение стратегии DOTS о том, что регрессию «бациллярного ядра», а также снижение летальности можно получить при выявлении не менее 70 % бациллярных больных и абациллирования не менее 85 % выявленных больных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Γ у р с к и й _Д . А . , Γ у р б и н а E . С . Вычисления в Mathcad 12. СПб.: Питер, 2006. 544 с.
- 2. Капков Л. П. Значение показателей резервуара бациллярных больных туберкулезом органов дыхания в оценке эпидемической ситуации по туберкулезу // Проблемы туберкулеза и болезней легких. 2007. № 1. С. 17–22. Перельман М. З., Корякин В. А. Фтизиатрия: Учебник. М.: Медицина, 2004. 520 с.
- Туберкулез в Российской Федерации в 2006 г.: Аналитический обзор основных статистических показателей по туберкулезу, используемых в Российской Федерации. М.: Триада, 2007. 126 с.
- Хрулева Т. С. Резервуар туберкулезной инфекции в Российской Федерации и возможности его ограничения: Дис. ... д-ра мед. наук. М., 2001. 291 с.
- Dye Ch., Scheele S., Dolin P., Pathania V. et al. Global Burden of Tuberculosis / Estimated Incidence, Prevalence, and Mortality by Country // JAMA. August 18, 1999. Vol. 282. № 7-677-686.
- Global tuberculosis control: surveillance, planning, financing. [Электронный http://www.whp.int/tb/publications/global_report/2007/download_centre/en/index,ht. pecypc]. Режим доступа:
- S ty b l o K ., Sutherland I. Epidemiological incidens for planning surveillance and evaluation of tuberculosis programmes // Bull. Int. Tuberc. 1974. Vol. 34. P. 49.
- Tretment of Tubeuculosis: Guidelines for National Programmes. 2-nd. ed. Geneva, 1997. 222 p.