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ON A GENERAL RELATIVITY EXTENSION*

B crarbe «O pacmupernn o0meil TeOpur OTHOCUTEIBHOCTHY MTOKa3aHO, YTO aHAJIM3 CBOWCTB AyaJlbHOCTH
TEH30pa KpUBHU3HBI PrMaHa yka3piBaeT Ha BO3MOKHOCTh PAaCHIMPEHHUs SWHINTEHHOBCKOM 00IIel Teopuu
OTHOCHUTEIIPHOCTH K TCOPHHU THITA HeabeNeBON SHT-MHIJIICOBCKON. YpaBHEHHS IBWIKEHUS HOBOW TCOPHH
ecTh ypaBHeHus SHra-Muica s TeH30pa KPUBU3HBI. DWHIITEHHOBCKHE ypaBHEHHS (C KOCMOJIOTHYE-
CKHMM YJICHOM, TOSIBJISIOMIMMCA KaK KOHCTaHTa MHTEIPUPOBAHUS) COAEPKATCS B MpenjiaraeMoil TeopHuHu.
HoBoe B cpaBHeHHHM ¢ NpekHEH TEOpHel COCTOUT B TOM, YTO I'PABUTAI[MOHHBIE MOJISI HE ONPEAEITISIOTCS
UCKJTIOYHUTEIBHO TEH30POM SHEPTrUU-UMITyJIbCa MaTepHH, a 00J1a1al0T CBOEH COOCTBEHHON HEAWHIITEHHOB-
CKOM TMHAMUKOW (BaKyyMHBIE (DIyKTyaIluu, CAMOJICHCTBHE), 4TO BOOOIIIE TUITHYHO 151 HeaOeNeBhIX Kau-

OpPOBOYHBIX TIOJICH.

KiroueBsle ciioBa: HeabeneBa AyaJIbHOCTb, HHCTAHTOH, HEOUHINTEHHOBCKAS IpaBUTalvsd, KOCMOJIOTHYCCKUN YJICH

INTRODUCTION

There is no doubt that Einstein’s General Rela-
tivity [2] is a nonabelian gauge theory although it is
not quite the same as the conventional Yang-Mills
theory [10]. Though this theme is a subject of much
controversy since R. Utiyama [9] and T. Kibble [4]
proposed the very first gauge models of Gravitation.

Nevertheless, there are rather many arguments
in favor of the theory is nonabelian. But how does
the fact that gravitation is nonabelian agree with the
widely spread and prevailing view the gravity source
is energy-momentum and only energy-momentum?
And how about nonabelian self-interaction? Of
course, here we touch very tender spots about ex-
clusivity of gravity as physical field, the energy
problem, etc. Still the spherically-symmetric field
out of Schwarzschild’s [8] sphere looks quite like
Coulomb’s solution in Electrodynamics, the abelian
theory without self-interaction. All the facts point
out the General Relativity is not quite conventional
nonabelian theory. In addition, Einstein’s equations
are not like Yang-Mills’.

It is shown in this paper that the theory can be
formulated ad exemplum as an ordinary Yang-
Mills’ theory with more or less standard description
in the form of the Yang-Mills equation, with self-
interactions and instantons. For all that, Einstein’s
equations are contained in the theory rather than
cancelled and do not dwindle. And their existence
as themselves seems to relate to the peculiarities of
gravity.

For our purposes, the essential fact is that inter-
nal (group) indices and space-time one are inter-
changeable, i. e. group acts in the Minkowski space-
time which as a result becomes curved. In fact the
internal space coincides with space-time. Therefore,
it is convenient to hold the viewpoint that the first
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two indices a, [ of the curvature tensor R, are
internal, and the second pair pu,v are the spacetime
indices. And vice versa that’s right as well. This is
the peculiar features of the gravity as a gauge theo-
ry. For this reason the gravity duality properties are
even more nontrivial and interesting than those in
the ordinary Yang-Mills theory.

THE DUALITY PROPERTIES OF THE RIEMANN
TENSOR

The duality properties which we are interested in
have been established in the article [5] which how-
ever includes some mistakes. About notations. The
metric with signature (+,—,—,—) in D=4 pseudo-
riemannian manifold is given to be metric-compati-
ble to a (Riemannian) connection in the regular way.

Let us introduce the operations: 1) the left dual
conjugation (*R _ ), 2) the right dual conjugation

oy,

(R*,,, ), and 3) twice dual conjugation (*R* ')

* = l po * =
afuy 2 afpo o afuv
— lR po ’* wo_ lE ' Rp(r Ewﬁ/u/’
2 af pouv ap 2 afpo 56

where £ =.—ge,,, — the Levi-Civita tensor, g —
the metric tensor determinant.
For example

stk = = _

afuv afuv afuw *

It is usual properties of double dual conjugates in
the (+,—,—,—) riemannian space.

In terms of the dual conjugates the cyclicity iden-
tity

+R 0

o -

R. +R

afuw v

is of the form
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*Rw = *Rﬂ”w =0and/ orR*w = R*a”w =0.
Bianchi’s identity
R;ufpn;b + R;uiép;o + R;uzab;p = 0

transforms to
*R v

W pow

=0and/orR* ° =0.

pp o

Or that can be rewritten as follows
*R*m,m” ., =0and / or*R*a”W ,=0.

A£1d twice dual conjugate Riemann’s tensor
*R* ;" can be represented by Riemann’s and its
contractions, i. e. by Ricci’s tensor and scalar, for
the expression

Eryﬁpa E — Euﬂpﬂg

ng Yopuv

can be calculated and expressed by the Kronecker
& -symbols:

1
R =R+ OUR+ 5, — DR, — R~ RY = (1)
Hereafter the notations are used
wo_ QUY vep —
504 6(/1 6;3 6&55 2 gad/w - gaugﬂu - gm/gﬁu .

Professor D. Fairlie kindly informed me of the
remarkable Lanczos paper [6], where betweenness
relation R . ~and *p* = probably first had been ob-
tained for tlle cuclidean signature space-time.

The next important step is to expand the Rie-
mann tensor into sum of two parts,

1
= _ * Rk =
Rm’i;m 2 (R(vﬁ;m + R*zt;f/zlz JrR(vﬁ;n/ R o;’i;n/) Rmi/uz + Smi/uz, (2)
where
= l( _x ), = l( R +*R* )
afu 2 afu afuw 7 afuw afu afuv’/ . (3)

Now one can represent the tensors R and
by Riemann’s tensor and Ricci’s tensor and

afuw

scalar
Raﬂ;u; = Rc\ﬁlu/ - (gcm Br + gBuRau - (4)
1
- gm/Rﬂy - gﬂ,uRau - 5 Rga/ilw )

1 1

Saﬂm/ - E(gn'u Rﬂu + gm/Rn;z - gm/ By gm aw 5 Rgm’?;w)- (5)

One must already say something about the tenso-
rial properties. The § is noteworthy. Note it is
expressed by the Ricci tensor and scalar only, not by
Riemann’s.

The tensor g = should not be confused with the
Weyl conformal “fensor C.,

R, =C, +1

afuw afuw E Rg abuv

Further, when twice dual conjugating, both S "
and R transform simply i

Xk =4S *Rx =_R_ (©)

afuv afuv? afuv afuv?
Le,S » and R s AT€ respectively twice selfdual
and ant1selfdual parts of the curvature tensor.

It makes sense to introduce a new “quantum”
number --- d-parity, characterizing behavior of ten-
sors (like curvature one) under twice dual conjuga-
tion. For example, R is odd, and S, —€venun-

der d-parity reflection. Two more examples of d-odd
tensorsare g . and £ .

There are nontrivial’ equat1ons
=0 7

afuv

and
R . =0. ®)

o

These equations have a direct relationship to in-
stantons in nonabelian gauge theories. In particular
in the case of SO4) or SU(2) gauge group, they de-
scribe the Belavin-Polyakov-Schwarz-Tyupkin in-
stanton and anti-instanton [1].

Below we shall see the equation ((8)) describes
the gravitational instantons.

Some solutions to these equations have been
obtained in [5]. For example, the equation ((7)) has
a static solution in the metric

ds* =e"""dt* =M dr* - r*(d6” +sin’0d¢’).  (9)

Six equations ((7)) with nonvanishing left mem-
ber reduce to the only second order equation

A=-v,

The solution is

v (r+v 2(r)=£2(l—e‘v),
r

(10)

.

Thus central-symmetric solution to equation ((7))
is static and qulte similar to Schwarzschild’s [8] ex-
cept for C;#*. It is not without purpose and we’ll be
back to this as well as to equations ((7)) and ((8)).
Below we’ll see that for equation ((7)) with vanish-
ing right hand side C, =0.

e =1+Cri+—=

FROM EINSTEIN’S TO GRAVITATIONAL YANG-
MILLS’ EQUATIONS

Solution to equation ((7)) including the Schwar-
zschild solution suggests that it is possible to use this
equation instead of Einstein’s [2]

, R+T=—4A

afp

R(w ——Rg

(1)

although in emptiness. Really, solution to this equa-
tion in the metric ((9)) coincide with ((10)), if C,=A.
Even more so, the tensor § in the left hand side
((7)) s fully determined by the Ricci tensor.

At this point, we want to call attention to one
little drawback to the Einstein equations. Of course,
at times, there had been many discussions treating
various advantages and disadvantages of these equa-
tions although the former are of the overwhelming
majority. This one has most likely been discussed
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before. The point is that ((11)) are system of dif-
ferential equations of second order in metric. And
the Schwarzschild solution has merely one integra-
tion constant. With more detailed examination of
Schwarzschild’s problem, it turns out that among
the equations there are both first order equations and
second order. With all that, solutions to first order
equations and second order equations are compatible
provided that one of the two integration constants is
strictly fixed. It is the reason that the Einstein second
order equation system solution (the Schwarzschild
solution) contains solely one integration constant.

This fact is of course known but completely ig-
nored. We find on this point, Einstein’s equations are
somewhat inconsistent.

Further heuristically, there will be obtained equa-
tion to generalize Einstein’s equation ((11)). Then the
new equation will be proclaimed as one of the basic
equations describing gravity produced by matter.
After that, it will be seen the new equation implies
the gravitational Yang-Mills equation. Finally, Ein-
stein’s equations will be shown to follow from both
the new equation and gravitational Yang-Mills’.

First expressing the Ricci tensor from ((11)) and
substituting that in ((5)), we can find

S

afuw -

12)

by’

where

(13)

This tensor is built from the metric tensor and the
energy-momentum tensor. Later it will be used in-
stead of the energy-momentum tensor. Note that the
tensor ©,,  is d-even like S, .

Now the important step follows. Let us forget the
Einstein equation and instead consider the equation
((12)) as one of the basic equations of gravity gener-
ated by matter.

Differentiate covariantly with respect to X" the
equation ((12))

1
A Tgaﬁw) .

1
6043;“/ = E(gaﬂ de/ + gﬁuTau 2

- goa/T:?u - gume/ -

Saﬂul/;p = (—)(h‘?;ty;l/ . (14)

Having remembered what is S,,, ((5)), it follows
that!

aﬁuy:u = zeaﬁuyw = Jm?;t . (15)

So, the tensor 6, determines the matter current
or the gravity matter source in the gravitational
Yang-Mills equation. The current is not even con-
served covariantly since the multiple covariant de-
rivatives don’t commute.

Now making contraction over o,

R, =207,
and taking into account the Bianchi identity and ex-
plicit form of the tensor @ , ~we obtain

(R+T)’ =0.
After integration

(16)

R+T=-4A, (17)

where —4A is the integration constant.

Now we have arrived at the cross-roads. There

are two alternatives. One can consider the equation

((12)) as a basic one. Then it implies both equations
(1)) and (17).

Otherwise, we can consider the gravitational
Yang-Mills equation ((15)) as the basic one. Then we
have to take ((12)) as a condition. This second option
is preferable.

Once again let’s go back to equation ((15)). It is of
the form of the Yang-Mills equation. The proposal is
to consider it as a basic gravitational equation. And
the equality ((17)) is the integral of motion, i. e. a
conservation law.

Let’s demonstrate that the Einstein equations are
implied by the basic equations ((15)) and ((12)). First
the conservation law ((17)) is obtained from ((15)).
Then contract ((12)) over (B,v) and eliminate T by
means of ((17)). As a result, we have exactly Ein-
stein’s equations ((11)). A, the constant is obviously
interpreted as a cosmological term appeared as an
integration one!

Thus it is shown that the equations ((12)), ((15))
are equivalent to Einstein’s. It is the equations those
are the basic gravitational equations. The equation
((15)) is the basic dynamic one, and another one
((12)) is a side condition which among fields singles
out those generated by matter.

Coming back to equations ((12)), or to ((7)) in
emptiness, we can see the equations solution in emp-
tiness ((10)) includes two integration constants, one
of which apparently associates with A. The solu-
tion describes (out of the matter distribution) empt
constant curvature space with the scale factor 1/ \/ﬁl
and with the central-symmetry matter distribution
about the point of origin. Let a point mass be at ori-
gin. Then with this origin, the metric is given by
((10)), and C, is proportional to the mass. As for an-
other constant, it seems to be possible to choose C,
proportional to A. Thus ((10)) is the Schwarzschild
static solution in the constant curvature space. We
consider it as a manifestation of fact that gravity is
nonabelian. The solution ((10)) describes the local
geometry in the neighborhood of some spherically
symmetric matter distribution. This geometry is de-
termined by both the mass (more precisely, energy-
momentum) and A. Is that A the same in case of
any mass or not? In other words, is the cosmological
constant A universal? Assume for a while that it is
not the case and A is specific for each mass and has
an arbitrary value. Then the cubic equation

v 2 C
go=¢ =1+Cr +7:0
determines the generalized Schwarzschild spheres
radii (horizons), number of which is up to three.
This would essentially affect the black holes theory.
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Classically, the solution ((10)) if you wish could
be interpreted as exhibition of asymptotic freedom
in gravity.

It specially should be noted that the vacuum so-
lution (in empty space) to the equation ((12)), i. e.
((10)) is nontrivial, as distinct from the Einstein
theory. That is, this solution does not just reduce to
the Minkowski spacetime. There are both static so-
lutions ((10)) and nonstatic ones with the de Sitter
asymptotic solution. For example, for the (closed)
Robertson-Walker metric

ds* = dt* = (1) dx +sin’x(d6* + sin'0dg?)) (1)
the equation ((12)) in emptiness for the scale factor
a(?) is of the form

ai-a*-1=0.
The vacuum solution is

1-1,
a(t) = a, cosh .
a

0

Similarly, for the open metric
ds® =dt* - 612(’)(@(2 +sinh’x(d6” + sin29d¢2)) (19)
the equation for ()
ai-a*+1=0,
has a solution
1-1,

a(t) = a, sinh
0

or

a(t)= a,sin—=.

0

For the latter case a(¢) is alternating in sign that
seems not to be of physical meaning.

One can use the model equations e. g. to con-
struct cosmological models. That’s done. On curso-
ry examination, the Einstein-Friedmann cosmology
remains intact. However now the cosmological term
seem to be the necessary element of the theory. It
should be experimentally measured in the observa-
tion cosmology. In the sense, “the dark matter prob-
lem” might seem otherwise. Universality of A -term
in this approach is open to question.

NON-EINSTEINIAN GRAVITY

It is quite clear that the equations ((15)) are more
general than the Einstein General Relativity. Name-
ly, any real gravitational field is considered to obey
these equations. Of all fields, the Einstein theory
extracts the ones to be generated by the matter en-
ergy-momentum. Within the theory proposed, the
extraction happens by imposing the side condition

((12)). This condition is analogous to self-duality
conditions for instantons in the Yang-Mills theory.
However it is not the vacuum one. It is possible to
treat some other conditions which might extract
non-Einsteinian solutions for gravitational fields.
Let us try to discuss possible conditions for grav-
ity. Quite general side condition for equation ((15))
is of the form
R~ =kKkR*

afur afuv

+e*R* " +Ag,,, +CE,,, +20,,., .

This is more general than (). This implies the
basic equation () fulfilled. In the matter presence
©,,, =0, and taking &=-1,,4,£=0, we obtain the
equation ((12)). Then the Einstein equation holds and
the source conservation takes place. Consequently,
the gravitational field equations imply motion equa-
tions of matter in the gravitation field generated by
the matter.

All that will not occur with alternative set of con-
stants ¢&,k,4,8 . Still admissibility of such a condition
is open to question.

In the case of ©,,, =0 we deal with the vacuum
side conditions.

Vacuum solutions to equation ((15)) could be
called gravitational instantons. General representa-
tion for instanton is

R~ =kKkR* +e*R*

B B B

+Ag . +CE

ww (20)

If the condition holds then gravitational Yang-
Mills equation ((13)) will be obeyed. The constants
K,&,A,E are not quite arbitrary and should be deter-
mined.

Alternatively instead of ((20)), one can consider
the equation

R . =r*R

afuy b

b

YRS M 4Ag 4 CE

afur afu”

Its solution provides the equation
R’,,=0
to be fulfilled.

The analysis of the equation ((20)) is rather com-
plicated so we shall restrict our consideration to par-
ticular cases.

We have already discussed the vacuum solutions
to the equation ((12)). Here is another possibility:
e=1; k, £ =0, A is arbitrary. Then we have the non-
Einsteinian equation

Raﬂ;w = A' (21)

Both left and right members of the equation are
d-even. Contracting over [ and g,v, we obtain

R=12A.
Let’s remind ourselves that we have the matter

vacuum, hence 7'=0. It seems correct in cosmol-
ogy to relate A to the cosmology term. Generally it
is arbitrary and possibly relates to the local vacuum
fluctuations of the gravitational fields in Universe.

gaﬁ,uu .
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The equation ((21)) can be solved in the (closed)

Robertson-Walker metric. The equation for a(¢)
ai+a* +1=-2Aa" (22)

has a solution

1
a(t)= \/Cl exp(2V-At) + C, exp(-2v-At) - 7 (23)
It is not analytic in A. Note a simple constant so-
lution

a(t)=a, R

This solution describes the empty constant posi-
tive curvature space. Could not it be called a gra-
vipole? Really it is the same solution as the static
solution ((10)) to equation ((7)) in emptiness, i. e.
with C,=0. It is impossible to pass directly on to
A =0 in this metric. However that corresponds to the
solution to equation ((21)) as the empty Minkowski
space.

In the case A =0, there is a time-dependent solu-
tion in the metric ((18))

a(t)=a,

There are similar solutions in the open Robert-
son-Walker metric as well. Interestingly, the mat-
ter motion (e. g. the test point mass) in the vacuum
gravitational fields is already not determined by the
field equations but obeyed the geodesic equation .

New approach allows more directly than before
to discuss topological effects in gravitation. Really,
the conditions ((21)) are “topological”. Projecting
((21)) onto R** (i. e. multiplying and contracting)
results in

R R _2AR= kR R¥

afuv afuv

_’_ERoﬂ;w *P*

afuv

After integration, we can see that (in case of con-
vergence) topological numbers can be expressed in
terms of invariants quadratic and linear in curva-

ture. Nontrivial topological solutions seem to exist
in manifolds with Euclidean signature.

CONCLUSION

So, a new version of gravity is proposed. It is in
form and fact the nonabelian Yang-Mills theory of
gravitational field with own rich dynamics and non-
trivial topology. The theory contains Einstein Gen-
eral Relativity.

It is impossible to avoid a question: what are the
Einstein equations? Do they express any conserva-
tion law? Or are they any compatibility conditions
due to the gauge group peculiarity? It should be spe-
cially noted that in the new theory the dynamics is
described by the equation ((15)) in presence of the
side condition ((12)) and/or others. And the Einstein
equations themselves are sequel of this condition
and the conservation law ((17)). We have to consider
various conditions as well as Einstein’s equations as
constraints. Perhaps that might change the situation
with quantizing gravity.

As for application the theory to astrophysics and
cosmology, it is the next job ahead. At once one can
say that standard Einstein-Friedmann cosmological
model seems not to change. Cosmological term situ-
ation may become more definitive. It is not matter of
a taste: to work or not to work with that. One must to
measure that. Once again one has to say that it is not
clear whether A is universal.

This new approach has nothing to say as yet
about black hole physics. The task in hand is to
search for nontrivial topology solutions. It may be
time to pass over from chattering about spacetime
foam and quantizing gravity [3], [7] to practice.

The theory proposed is natural from the view-
point the unity of interactions. Gauge invariance and
duality are the underlying ideas. Some of these ideas
are not yet exhausted in gravity and of interest to
apply in the Yang-Mills theory. But this is another
topic.
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NOTES

! Cosmas Zachos pointed out that (15) can be obtained without references to duality just by contracting the Bianchi identity, then

taking into account Einstein’s equation.
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ON A GENERAL RELATIVITY EXTENSION

The thorough analysis of the duality properties of the Riemann curvature tensor points to the possibility of the extension of Einstein’s
General Relativity to a nonabelian Yang-Mills theory. The equations of motion of the theory are the Yang-Mills’ equations for the
curvature tensor. Einstein’s equations (with cosmological term to appear as an integration constant) are contained in the theory pro-
posed. What is new is that now the gravitational field is not exclusively determined by the matter energy-momentum but can possess
its own non-Einsteinian dynamics (vacuum fluctuations, self-interaction) which is generally an attribute of a nonabelian gauge field.
The gravitational equations proper due to either matter energy-momentum or vacuum fluctuations are side conditions imposed on
the Riemann tensor, like self-duality conditions. One of such conditions in the end results in Einstein’s equations, other ones are the
gravitational instantons equations.
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