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ON A GENERAL RELATIVITY EXTENSION*

В статье «О расширении общей теории относительности» показано, что анализ свойств дуальности 
тензора кривизны Римана указывает на возможность расширения эйнштейновской общей теории 
относительности к теории типа неабелевой янг-миллсовской. Уравнения движения новой теории 
есть уравнения Янга-Миллса для тензора кривизны. Эйнштейновские уравнения (с космологиче-
ским членом, появляющимся как константа интегрирования) содержатся в предлагаемой теории. 
Новое в сравнении с прежней теорией состоит в том, что гравитационные поля не определяются 
исключительно тензором энергии-импульса материи, а обладают своей собственной неэйнштейнов-
ской динамикой (вакуумные флуктуации, самодействие), что вообще типично для неабелевых кали-
бровочных полей.
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INTRODUCTION

There is no doubt that Einstein’s General Rela-
tivity [2] is a nonabelian gauge theory although it is 
not quite the same as the conventional Yang-Mills 
theory [10]. Though this theme is a subject of much 
controversy since R. Utiyama [9] and T. Kibble [4] 
proposed the very first gauge models of Gravitation.

Nevertheless, there are rather many arguments 
in favor of the theory is nonabelian. But how does 
the fact that gravitation is nonabelian agree with the 
widely spread and prevailing view the gravity source 
is energy-momentum and only energy-momentum? 
And how about nonabelian self-interaction? Of 
course, here we touch very tender spots about ex-
clusivity of gravity as physical field, the energy 
problem, etc. Still the spherically-symmetric field 
out of Schwarzschild’s [8] sphere looks quite like 
Coulomb’s solution in Electrodynamics, the abelian 
theory without self-interaction. All the facts point 
out the General Relativity is not quite conventional 
nonabelian theory. In addition, Einstein’s equations 
are not like Yang-Mills’.

It is shown in this paper that the theory can be 
formulated ad exemplum as an ordinary Yang-
Mills’ theory with more or less standard description 
in the form of the Yang-Mills equation, with self-
interactions and instantons. For all that, Einstein’s 
equations are contained in the theory rather than 
cancelled and do not dwindle. And their existence 
as themselves seems to relate to the peculiarities of 
gravity.

For our purposes, the essential fact is that inter-
nal (group) indices and space-time one are inter-
changeable, i. e. group acts in the Minkowski space-
time which as a result becomes curved. In fact the 
internal space coincides with space-time. Therefore, 
it is convenient to hold the viewpoint that the first 

two indices α β, α β,  of the curvature tensor Rαβµν  are 
internal, and the second pair ,µ ν  are the spacetime 
indices. And vice versa that’s right as well. This is 
the peculiar features of the gravity as a gauge theo-
ry. For this reason the gravity duality properties are 
even more nontrivial and interesting than those in 
the ordinary Yang-Mills theory.

THE DUALITY PROPERTIES OF THE RIEMANN 
TENSOR

The duality properties which we are interested in 
have been established in the article [5] which how-
ever includes some mistakes. About notations. The 
metric with signature + − − −( , , , )  in D = 4  pseudo-
riemannian manifold is given to be metric-compati-
ble to a (Riemannian) connection in the regular way.

Let us introduce the operations: 1) the left dual 
conjugation ( R* αβµν ), 2) the right dual conjugation  
( R*αβµν ), and 3) twice dual conjugation ( R* *αβ

µν ) 

R E R R R E R E R E* = 1
2

, * = 1
2

,* * = 1
2

,αβµν αβρσ
ρσ
µν αβµν αβ

ρσ
ρσµν αβ

µν
αβρσ

ρσ
γδ

γδµν

R E R R R E R E R E* = 1
2

, * = 1
2

,* * = 1
2

,αβµν αβρσ
ρσ
µν αβµν αβ

ρσ
ρσµν αβ

µν
αβρσ

ρσ
γδ

γδµν

where E g= ε-αβµν αβµν  – the Levi-Civita tensor, g  – 
the metric tensor determinant.

For example 
R R R** = ** =-αβµν αβµν αβµν .

It is usual properties of double dual conjugates in 
the (+,–,–,–) riemannian space.

In terms of the dual conjugates the cyclicity iden-
tity 

R R R = 0+ +αβµν ανβµ αµνβ

is of the form 



А. Л. Кошкаров110

R R and orR R* * = 0 / * * = 0,º ºαµ α
ν
µν αµ α

ν
µν .

Bianchi’s identity 
R R R = 0; ; ;+ +µνρσ δ µνδρ σ µνσδ ρ

transforms to 
R and orR* = 0 / * = 0; ;µ
ν
ρσ ν µνρ

σ
σ .

Or that can be rewritten as follows	
R and or R* * = 0 / * * = 0; ;αβµ

ν
ν α

β
µν β .

And twice dual conjugate Riemann’s tensor 
R* *αβ

µν  can be represented by Riemann’s and its 
contractions, i. e. by Ricci’s tensor and scalar, for 
the expression 

E E = ε εαβρσ
γδµν

αβρσ
γδµν

can be calculated and expressed by the Kronecker  
δ -symbols: 

R R R R R R R* * = 1
2

=δ δ δ δ δ− + + − − −αβ
µν µν

αβ α
µ
β
ν

β
ν
α
µ

β
µ
α
ν

α
ν
β
µ

αβ
µν  (1)

Hereafter the notations are used 
g g g g g= , =δ δ δ δ δ- -αβ

µν
α
µ
β
ν

α
ν
β
µ

αβµν αµ βν αν βµ .

Professor D. Fairlie kindly informed me of the 
remarkable Lanczos paper [6], where betweenness 
relation Rαβµν  and R* *αβµν  probably first had been ob-
tained for the euclidean signature space-time.

The next important step is to expand the Rie-
mann tensor into sum of two parts, 

R R R R R R S= 1
2
( * * * * ) =+ + − +αβµν αβµν αβµν αβµν αβµν αβµν αβµν, (2)

where 

R R R S R R= 1
2
( * * ), = 1

2
( * * )− +αβµν αβµν αβµν αβµν αβµν αβµν . (3)

Now one can represent the tensors Rαβµν  and 
Sαβµν  by Riemann’s tensor and Ricci’s tensor and 
scalar 

R R g R g R g R g R Rg= 1
2
( 1

2
)− + − − −αβµν αβµν αµ βν βν αµ αν βµ βµ αν αβµν 

R R g R g R g R g R Rg= 1
2
( 1

2
)− + − − −αβµν αβµν αµ βν βν αµ αν βµ βµ αν αβµν .

S g R g R g R g R Rg= 1
2
( 1

2
)+ − − −αβµν αµ βν βν αµ αν βµ βµ αν αβµν . (5)

One must already say something about the tenso-
rial properties. The Sαβµν  is noteworthy. Note it is 
expressed by the Ricci tensor and scalar only, not by 
Riemann’s.

The tensor 
αβ νR  should not be confused with the 

Weyl conformal tensor Cαβµν  

R C Rg= 1
12

+αβµν αβµν αβµν .

Further, when twice dual conjugating, both Sαβµν  and Rαβµν  transform  simply 

	 S S R R* * = , * * =+ −αβµν αβµν αβµν αβµν ,	 (6)
i. e., Sαβµν  and Rαβµν  are respectively twice selfdual 
and antiselfdual parts of the curvature tensor.

It makes sense to introduce a new “quantum” 
number --- d-parity, characterizing behavior of ten-
sors (like curvature one) under twice dual conjuga-
tion. For example, Rαβµν  is odd, and Sαβµν  – even un-
der d-parity reflection. Two more examples of d-odd 
tensors are gαβµν  and Eαβµν .

There are nontrivial equations 
	 S = 0αβµν

	  (7)
and 
	 R = 0αβµν

.	  (8)
These equations have a direct relationship to in-

stantons in nonabelian gauge theories. In particular 
in the case of SO(4)  or SU (2)  gauge group, they de-
scribe the Belavin-Polyakov-Schwarz-Tyupkin in-
stanton and anti-instanton [1].

Below we shall see the equation ((8)) describes 
the gravitational instantons.

Some solutions to these equations have been 
obtained in [5]. For example, the equation ((7)) has  
a static solution in the metric 
	 θ θ φ− − +ν λds e dt e dr r d d= ( sin )t r t r2 ( , ) 2 ( , ) 2 2 2 2 2 .	 (9)

Six equations ((7)) with nonvanishing left mem-
ber reduce to the only second order equation 

λ ν ν ν− + − ν−r r
r

e= , ( ) ( ) = 2 (1 )2
2 .

The solution is 

	 + +νe C r
C
r

=1 1
2 2 .	 (10)

Thus central-symmetric solution to equation ((7)) 
is static and quite similar to Schwarzschild’s [8] ex-
cept for C r1

2 . It is not without purpose and we’ll be 
back to this as well as to equations ((7)) and ((8)). 
Below we’ll see that for equation ((7)) with vanish-
ing right hand side C = 02 .

FROM EINSTEIN’S TO GRAVITATIONAL YANG-
MILLS’ EQUATIONS 

Solution to equation ((7)) including the Schwar-
zschild solution suggests that it is possible to use this 
equation instead of Einstein’s [2] 

	 R Rg g T R T1
2

= , = 4− Λ + + − Λαµ αµ αµ αµ 	 (11)
although in emptiness. Really, solution to this equa-
tion in the metric ((9)) coincide with ((10)), if ΛC =1 . 
Even more so, the tensor Sαβµν  in the left hand side 
((7)) is fully determined by the Ricci tensor.

At this point, we want to call attention to one 
little drawback to the Einstein equations. Of course, 
at times, there had been many discussions treating 
various advantages and disadvantages of these equa-
tions although the former are of the overwhelming 
majority. This one has most likely been discussed 

(4)



On a General Relativity Extension 111

before. The point is that ((11)) are system of dif-
ferential equations of second order in metric. And 
the Schwarzschild solution has merely one integra-
tion constant. With more detailed examination of 
Schwarzschild’s problem, it turns out that among 
the equations there are both first order equations and 
second order. With all that, solutions to first order 
equations and second order equations are compatible 
provided that one of the two integration constants is 
strictly fixed. It is the reason that the Einstein second 
order equation system solution (the Schwarzschild 
solution) contains solely one integration constant.

This fact is of course known but completely ig-
nored. We find on this point, Einstein’s equations are 
somewhat inconsistent.

Further heuristically, there will be obtained equa-
tion to generalize Einstein’s equation ((11)). Then the 
new equation will be proclaimed as one of the basic 
equations describing gravity produced by matter. 
After that, it will be seen the new equation implies 
the gravitational Yang-Mills equation. Finally, Ein-
stein’s equations will be shown to follow from both 
the new equation and gravitational Yang-Mills’.

First expressing the Ricci tensor from ((11)) and 
substituting that in ((5)), we can find 
	 S = Qαβµν αβµν ,	 (12)
where 

g T g T g T g T Tg= 1
2
( 1

2
)Θ + − − −αβµν αµ βν βν αµ αν βµ βµ αν αβµν .	  (13)

This tensor is built from the metric tensor and the 
energy-momentum tensor. Later it will be used in-
stead of the energy-momentum tensor. Note that the 
tensor Qαβµν  is d-even like Sαβµν .

Now the important step follows. Let us forget the 
Einstein equation and instead consider the equation 
((12)) as one of the basic equations of gravity gener-
ated by matter.

Differentiate covariantly with respect to νx  the 
equation ((12)) 
	 S =; ;Qαβµ

ν
ν αβµ

ν
ν .	 (14)

Having remembered what is Sαβµν  ((5)), it follows 
that1

	 R J= 2; ;Θ ≡αβµ
ν
ν αβµ

ν
ν αβµ .	 (15)

So, the tensor Qαβµν  determines the matter current 
or the gravity matter source in the gravitational 
Yang-Mills equation. The current is not even con-
served covariantly since the multiple covariant de-
rivatives don’t commute.

Now making contraction over ,α µ  
Θβ

ν
ν β

ν
νR = 2; ;

and taking into account the Bianchi identity and ex-
plicit form of the tensor Qαβµν  we obtain 
	 + βR T( ) = 0, .	 (16)

After integration 

	 + − ΛR T = 4 ,	 (17)
where − Λ4  is the integration constant.

Now we have arrived at the cross-roads. There 
are two alternatives. One can consider the equation 
((12)) as a basic one. Then it implies both equations 
((15)) and ((17)).

Otherwise, we can consider the gravitational 
Yang-Mills equation ((15)) as the basic one. Then we 
have to take ((12)) as a condition. This second option 
is preferable.

Once again let’s go back to equation ((15)). It is of 
the form of the Yang-Mills equation. The proposal is 
to consider it as a basic gravitational equation. And 
the equality ((17)) is the integral of motion, i. e. a 
conservation law.

Let’s demonstrate that the Einstein equations are 
implied by the basic equations ((15)) and ((12)). First 
the conservation law ((17)) is obtained from ((15)). 
Then contract ((12)) over β ν( , )  and eliminate T  by 
means of ((17)). As a result, we have exactly Ein-
stein’s equations ((11)). Λ , the constant is obviously 
interpreted as a cosmological term appeared as an 
integration one!

Thus it is shown that the equations ((12)), ((15)) 
are equivalent to Einstein’s. It is the equations those 
are the basic gravitational equations. The equation 
((15)) is the  basic dynamic one, and another one 
((12)) is a  side condition which among fields singles 
out those generated by matter.

Coming back to equations ((12)), or to ((7)) in 
emptiness, we can see the equations solution in emp-
tiness ((10)) includes two integration constants, one 
of which apparently associates with Λ . The solu-
tion describes (out of the matter distribution) empty 
constant curvature space with the scale factor Λ1/
and with the central-symmetry matter distribution 
about the point of origin. Let a point mass be at ori-
gin. Then with this origin, the metric is given by 
((10)), and C2  is proportional to the mass. As for an-
other constant, it seems to be possible to choose C1  
proportional to Λ . Thus ((10)) is the Schwarzschild 
static solution in the constant curvature space. We 
consider it as a manifestation of fact that gravity is 
nonabelian. The solution ((10)) describes the local 
geometry in the neighborhood of some spherically 
symmetric matter distribution. This geometry is de-
termined by both the mass (more precisely, energy-
momentum) and Λ . Is that Λ  the same in case of 
any mass or not? In other words, is the cosmological 
constant Λ  universal? Assume for a while that it is 
not the case and Λ  is specific for each mass and has 
an arbitrary value. Then the cubic equation 

+ +νg e C r
C
r

= =1 = 000 1
2 2

determines the generalized Schwarzschild spheres 
radii (horizons), number of which is up to three. 
This would essentially affect the black holes theory.
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Classically, the solution ((10)) if you wish could 
be interpreted as exhibition of asymptotic freedom 
in gravity.

It specially should be noted that the vacuum so-
lution (in empty space) to the equation ((12)), i. e. 
((10)) is nontrivial, as distinct from the Einstein 
theory. That is, this solution does not just reduce to 
the Minkowski spacetime. There are both static so-
lutions ((10)) and nonstatic ones with the de Sitter 
asymptotic solution. For example, for the (closed) 
Robertson-Walker metric 

χ χ θ θ φ( )− + +ds dt a t d d d= ( ) sin ( sin )2 2 2 2 2 2 2 2 	 (18)
the equation ((12)) in emptiness for the scale factor 
a t( )  is of the form 

- - aa a 1= 0.2

The vacuum solution is 
-

a t a
t t

a
( ) = cosh .0

0

0

Similarly, for the open metric 

	
χ χ θ θ φ( )− + +ds dt a t d d d= ( ) sinh ( sin )2 2 2 2 2 2 2 2 	(19)

the equation for a t( )  
− + aa a 1= 0,2

has a solution 
-

a t a
t t

a
( ) = sinh0

0

0

or 
-

a t a
t t

a
( ) = sin0

0

0

.

For the latter case a t( )  is alternating in sign that 
seems not to be of physical meaning.

One can use the model equations e. g. to con-
struct cosmological models. That’s done. On curso-
ry examination, the Einstein-Friedmann cosmology 
remains intact. However now the cosmological term 
seem to be the necessary element of the theory. It 
should be experimentally measured in the observa-
tion cosmology. In the sense, “the dark matter prob-
lem” might seem otherwise. Universality of Λ -term 
in this approach is open to question.

NON-EINSTEINIAN GRAVITY

It is quite clear that the equations ((15)) are more 
general than the Einstein General Relativity. Name-
ly, any real gravitational field is considered to obey 
these equations. Of all fields, the Einstein theory 
extracts the ones to be generated by the matter en-
ergy-momentum. Within the theory proposed, the 
extraction happens by imposing the side condition 

((12)). This condition is analogous to self-duality 
conditions for instantons in the Yang-Mills theory. 
However it is not the vacuum one. It is possible to 
treat some other conditions which might extract 
non-Einsteinian solutions for gravitational fields.

Let us try to discuss possible conditions for grav-
ity. Quite general side condition for equation ((15)) 
is of the form 

λ ζR R R g E= * * * 2κ ε+ + + + Θαβµν αβµν αβ
µν

αβµν αβµν αβµν .

This is more general than (). This implies the 
basic equation () fulfilled. In the matter presence 

0Θ ≠αβµν , and taking ε κ λ ζ−= 1, , , = 0 , we obtain the 
equation ((12)). Then the Einstein equation holds and 
the source conservation takes place. Consequently, 
the gravitational field equations imply motion equa-
tions of matter in the gravitation field generated by 
the matter.

All that will not occur with alternative set of con-
stants ε κ λ ζ, , , . Still admissibility of such a condition 
is open to question.

In the case of = 0Qαβµν  we deal with the vacuum 
side conditions.

Vacuum solutions to equation ((15)) could be 
called gravitational instantons. General representa-
tion for instanton is 

	 λ ζR R R g E= * * *κ ε+ + +αβµν αβµν αβµν αβµν αβµν .	  (20)
If the condition holds then gravitational Yang-

Mills equation ((13)) will be obeyed. The constants 
κ ε λ ζ, , ,  are not quite arbitrary and should be deter-
mined.

Alternatively instead of ((20)), one can consider 
the equation 

λ ζR R R g E= * * * .κ ε+ + +αβµν αβµν αβ
µν

αβµν αβµν

Its solution provides the equation 
R = 0;α
β
µν β

to be fulfilled.
The analysis of the equation ((20)) is rather com-

plicated so we shall restrict our consideration to par-
ticular cases.

We have already discussed the vacuum solutions 
to the equation ((12)). Here is another possibility: 
ε κ ζ=1; , = 0 ε κ ζ=1; , = 0 ε κ ζ=1; , = 0 , λ  is arbitrary. Then we have the non-
Einsteinian equation 

	 λ βR g=αβµν α µν .	  (21)
Both left and right members of the equation are 

d-even. Contracting over ,α µ  and β ν, , we obtain 
λR =12 .

Let’s remind ourselves that we have the matter 
vacuum, hence T = 0 . It seems correct in cosmol-
ogy to relate λ  to the cosmology term. Generally it 
is arbitrary and possibly relates to the local vacuum 
fluctuations of the gravitational fields in Universe.
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The equation ((21)) can be solved in the (closed) 
Robertson-Walker metric. The equation for a t( )  

	 λ+ + − aa a a1= 22 2 	  (22)
has a solution 

	 λ λ
λ

− + − − −a t C t C t( ) = exp(2 ) exp( 2 ) 1
21 2 . 	(23)

It is not analytic in λ . Note a simple constant so-
lution 

λ
−a t a( ) = = 1
20 .

This solution describes the empty constant posi-
tive curvature space. Could not it be called a gra-
vipole? Really it is the same solution as the static 
solution ((10)) to equation ((7)) in emptiness, i. e. 
with C = 02 . It is impossible to pass directly on to 
λ = 0  in this metric. However that corresponds to the 
solution to equation ((21)) as the empty Minkowski 
space.

In the case λ = 0 , there is a time-dependent solu-
tion in the metric  ((18)) 

-
-

a t a
t t

a
( ) = 10

0

0

2

.

There are similar solutions in the open Robert-
son-Walker metric as well. Interestingly, the mat-
ter motion (e. g. the test point mass) in the vacuum 
gravitational fields is already not determined by the 
field equations but obeyed the geodesic equation .

New approach allows more directly than before 
to discuss topological effects in gravitation. Really, 
the conditions ((21)) are “topological”. Projecting 
((21)) onto Rαβµν  (i. e. multiplying and contracting) 
results in 

λR R R R R R R2 = * * *κ ε− +αβµν
αβµν

αβµν
αβµν

αβµν
αβµν .

After integration, we can see that (in case of con-
vergence) topological numbers can be expressed in 
terms of invariants quadratic and linear in curva-

ture. Nontrivial topological solutions seem to exist 
in manifolds with Euclidean signature.

CONCLUSION

So, a new version of gravity is proposed. It is in 
form and fact the nonabelian Yang-Mills theory of 
gravitational field with own rich dynamics and non-
trivial topology. The theory contains Einstein Gen-
eral Relativity.

It is impossible to avoid a question: what are the 
Einstein equations? Do they express any conserva-
tion law? Or are they any compatibility conditions 
due to the gauge group peculiarity? It should be spe-
cially noted that in the new theory the dynamics is 
described by the equation ((15)) in presence of the 
side condition ((12)) and/or others. And the Einstein 
equations themselves are sequel of this condition 
and the conservation law ((17)). We have to consider 
various conditions as well as Einstein’s equations as  
constraints. Perhaps that might change the situation 
with quantizing gravity.

As for application the theory to astrophysics and 
cosmology, it is the next job ahead. At once one can 
say that standard Einstein-Friedmann cosmological 
model seems not to change. Cosmological term situ-
ation may become more definitive. It is not matter of 
a taste: to work or not to work with that. One must to 
measure that. Once again one has to say that it is not 
clear whether Λ  is universal.

This new approach has nothing to say as yet 
about black hole physics. The task in hand is to 
search for nontrivial topology solutions. It may be 
time to pass over from chattering about spacetime 
foam and quantizing gravity [3], [7] to practice.

The theory proposed is natural from the view-
point the unity of interactions. Gauge invariance and 
duality are the underlying ideas. Some of these ideas 
are not yet exhausted in gravity and of interest to 
apply in the Yang-Mills theory. But this is another 
topic.
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NOTES
1	 Cosmas Zachos pointed out that (15) can be obtained without references to duality just by contracting the Bianchi identity, then 

taking into account Einstein’s equation.
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ON A GENERAL RELATIVITY EXTENSION

The thorough analysis of the duality properties of the Riemann curvature tensor points to the possibility of the extension of Einstein’s 
General Relativity to a nonabelian Yang-Mills theory. The equations of motion of the theory are the Yang-Mills’ equations for the 
curvature tensor. Einstein’s equations (with cosmological term to appear as an integration constant) are contained in the theory pro-
posed. What is new is that now the gravitational field is not exclusively determined by the matter energy-momentum but can possess 
its own non-Einsteinian dynamics (vacuum fluctuations, self-interaction) which is generally an attribute of a nonabelian gauge field. 
The gravitational equations proper due to either matter energy-momentum or vacuum fluctuations are side conditions imposed on 
the Riemann tensor, like self-duality conditions. One of such conditions in the end results in Einstein’s equations, other ones are the 
gravitational instantons equations.
Key words:  nonabelian duality, instanton, noneinsteinian gravity, cosmological term

REFERENCES
1.	 B e l a v i n  A . ,  P o l y a k o v  A . ,  S c h w a r z  A .  a n d  Ty u p k i n  I .  �Pseudoparticle solutions of the Yang-Mills 

equations // Phys. Lett. 1975. Vol. B59. P. 85.
2.	 E i n s t e i n  A .   �Die Grundlage der allgemeinen Relativitätstheorie // Ann. d. Phys. 1916. Vol. 49. P. 769.
3.	 H a w k i n g  S .  �Space-Time Foam // Nuclear Phys. 1978. Vol. B144. P. 349.
4.	 K i b b l e  T .  W.  �Lorentz invariance and the gravitational field // Journ. of Math. Phys. 1961. Vol. 2. P. 212.
5.	 K o s h k a r o v  A .  L . � On General Relativty Extension. URL: Arxiv-org e-print archive, hep-th/9710038
6.	 L a n c z o s  C .  �A remarkable property of the Riemann-Christoffel tensor in four dimensions // Annals of Math. 1938. Vol. 39, 

4. P. 842. 
7.	 M i s n e r  C . ,  T h o r n e  K .  a n d  W h e e l e r  J .  �Gravitation. San Francisco: W. H. Freeman and Company Limited, 1973. 

Vol. 1, 2, 3.
8.	 S c h w a r z s c h i l d  K .  �Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Berlin, 1916. 189 s.
9.	 U t i y a m a  R .  �Invariant Theoretical Interpretation of Interaction // Phys. Rev. 1956. Vol. 101. P. 1597.

10.	 Ya n g  C .  N .  a n d  M i l l s  R .  L .  �Conservation of Isotopic Spin and Isotopic Gauge Invariance // Phys. Rev. 1954. 
Vol. 96. P. 191. 

Поступила в редакцию 25.07.2014




