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PERTURBED COMPANIONS OF OSTROWSKI TYPE
INEQUALITIES FOR 𝑁-TIMES DIFFERENTIABLE

FUNCTIONS AND APPLICATIONS

Abstract. We firstly examine some inequalities obtained by us-
ing sets of complex-valued functions for functions whose high order
derivatives are restricted. We also give some approximations for the
functions whose derivatives up to the order 𝑛−1 (𝑛 ≥ 1) are contin-
uous and whose the 𝑛th derivatives are of bounded variation. So,
the results provide extensions of those presented in earlier works.
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1. Introduction. The inequality discovered by Ostrowski in 1938 has
been studied by a large number of researchers due to its comprehensive
application fields in numerical analysis and certain special means. This
inequality [21], established by using mappings whose first derivatives are
bounded, is stated in the following manner.

Theorem 1. Let 𝑓 : [𝑎, 𝑏] → R be a differentiable mapping on (𝑎, 𝑏),
𝑓 ′ : (𝑎, 𝑏) → R is bounded on (𝑎, 𝑏), i. e. ‖𝑓 ′‖∞ := sup

𝑡∈(𝑎,𝑏)
|𝑓 ′(𝑡)| < ∞. Then

we have the inequality

⃒⃒⃒
𝑓(𝑥) − 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡
⃒⃒⃒
≤

[︁1

4
+

(︀
𝑥− 𝑎+𝑏

2

)︀2
(𝑏− 𝑎)2

]︁
(𝑏− 𝑎) ‖𝑓 ′‖∞ , (1)

for all 𝑥 ∈ [𝑎, 𝑏]. The constant 1
4

is the best possible.

Over the years, interested researchers have studied it to provide novel
refinements, improvements, and generalizations of the inequality (1). For
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instance, some authors deduced new Ostrowski-type inequalities for dif-
ferentiable, twice differentiable, or higher-order differentiable functions
in [7], [8], [9], and [22] (see also references therein). On the other side, the
perturbed method has been much used to generalise integral inequalities.
For example, after Dragomir had published his paper [14] involving the
perturbed inequality of the Ostrowski type established by utilizing absolu-
tely continuous functions, some authors focused on perturbed integral
inequalities for twice and higher order differentiable mappings in [5], [16],
[17], [18], and [19]. What is more, some companion perturbed inequalities
for various assumptions of the functions are refined by using three- and
five-step quadratic kernels in [15], [23], and [24].

In particular, some mathematicians focus on the Ostrowski-type inequa-
lities obtained by using mappings of bounded variation, as well as the other
function species. In the reference [11], Dragomir introduced the following
useful result for functions of bounded variation:

Theorem 2. Let 𝑓 : [𝑎, 𝑏] → R be a mapping of bounded variation on
[𝑎, 𝑏]. Then

⃒⃒⃒ 𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡− (𝑏− 𝑎) 𝑓(𝑥)
⃒⃒⃒
≤

[︁1

2
(𝑏− 𝑎) +

⃒⃒⃒
𝑥− 𝑎 + 𝑏

2

⃒⃒⃒]︁ 𝑏⋁︁
𝑎

(𝑓) (2)

holds for all 𝑥 ∈ [𝑎, 𝑏]. The constant 1
2

is the best possible.

Morever, Dragomir indicated the original generalisation of the Ostrowski-
type results for functions that are of bounded variation in [10]. Afterwards,
results pertaining to the inequality (1) for functions whose first derivatives
are of bounded variation, are given in [1], [6], and [20]. Also, certain gen-
eralized outcomes for mappings that possess 𝑛-th derivatives of bounded
variation, are established in [3] and [13]. In addition to all the results,
some companion versions of perturbed results concerning Ostrowski’s in-
equality for bounded-variation mappings are examined in [2], [4], and [12].

We also note that Dragomir established the following identity, so as to
observe some perturbed outcomes of Ostrowski-type inequalities in [14].

Theorem 3. Let 𝑓 : [𝑎, 𝑏] → C be absolutely continuous on [𝑎, 𝑏] and
𝑥 ∈ [𝑎, 𝑏]. Then, for any complex numbers 𝜆1(𝑥) and 𝜆2(𝑥), we have

1

𝑏− 𝑎

𝑥∫︁
𝑎

(𝑡− 𝑎) [𝑓 ′(𝑡) − 𝜆1(𝑥)] 𝑑𝑡 +
1

𝑏− 𝑎

𝑏∫︁
𝑥

(𝑡− 𝑏) [𝑓 ′(𝑡) − 𝜆2(𝑥)] 𝑑𝑡 =
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= 𝑓(𝑥) +
1

2 (𝑏− 𝑎)

[︀
(𝑏− 𝑥)2 𝜆2(𝑥) − (𝑥− 𝑎)2 𝜆1(𝑥)

]︀
− 1

𝑏− 𝑎

𝑏∫︁
𝑎

𝑓 ′(𝑡)𝑑𝑡

where the integrals in the left-hand side are taken in the Lebesgue sense.

The primary purpose of this work is to deduce original inequalities
for functions, whose higher-order derivatives are limited. For this, some
approximations are examined with the help of the identity obtained by uti-
lizing higher-order differentiable mappings. So, the new companion results
are derived, regarding inequality (1) for functions whose 𝑛-th derivatives
are bounded and of bounded variation. Relations between these results
and inequalities given in the earlier works are also examined.

2. The case when 𝑓 (𝑛) is bounded. Before we can establish the
inequalities that will be given in this section, we should mention the fol-
lowing identity.

Lemma 1. Let 𝑓 : [𝑎, 𝑏] → C be an 𝑛-time differentiable function
on (𝑎, 𝑏). Then, for any complex numbers 𝜆𝑖(𝑥), 𝑖 = 1, 2, 3 and all
𝑥 ∈ [𝑎, 𝑎+𝑏

2
], we have the identity

𝑥∫︁
𝑎

(𝑡− 𝑎)𝑛

𝑛!

[︀
𝑓 (𝑛)(𝑡) − 𝜆1(𝑥)

]︀
𝑑𝑡+

+

𝑎+𝑏−𝑥∫︁
𝑥

1

𝑛!

(︂
𝑡− 𝑎 + 𝑏

2

)︂𝑛 [︀
𝑓 (𝑛)(𝑡) − 𝜆2(𝑥)

]︀
𝑑𝑡+

+

𝑏∫︁
𝑎+𝑏−𝑥

(𝑡− 𝑏)𝑛

𝑛!

[︀
𝑓 (𝑛)(𝑡) − 𝜆3(𝑥)

]︀
𝑑𝑡 =

= 𝑆(𝑓 : 𝑛, 𝑥) −𝑅(𝑛, 𝑥) + (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡, (3)

where 𝑆(𝑓 : 𝑛, 𝑥) and 𝑅(𝑛, 𝑥) are defined by

𝑆(𝑓 : 𝑛, 𝑥) =
𝑛−1∑︁
𝑘=0

(−1)𝑛+1
[︀
𝑓 (𝑘)(𝑎 + 𝑏− 𝑥) + (−1)𝑘𝑓 (𝑘)(𝑥)

]︀
(𝑘 + 1)!

×

×
[︁
(𝑥− 𝑎)𝑘+1 + (−1)𝑘

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑘+1]︁
(4)
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and

𝑅(𝑛, 𝑥) = [𝜆1(𝑥) + (−1)𝑛𝜆3(𝑥)] (𝑥−𝑎)𝑛+1

(𝑛+1)!
+ [1+(−1)𝑛] 𝜆2(𝑥)

(𝑛+1)!
(𝑎+𝑏

2
− 𝑥)𝑛+1.

Proof. Combining the resulting identities by using fundamental analysis
operators, after applying integration by parts 𝑛 times to the three integrals
in the right-hand side of the equality (3), the required identity can be easily
obtained. �

The expression 𝑆(𝑓 : 𝑛, 𝑥) (4) will be used throughout this paper.
Furthermore, we define the sets of complex-valued mappings, for

𝛾,Γ ∈ C and an interval of real numbers [𝑎, 𝑏],

𝑈 [𝑎,𝑏](𝛾,Γ) :=
{︁
𝑓 : [𝑎, 𝑏] → C

⃒⃒⃒
ℜ
[︁
(Γ − 𝑓(𝑡))

(︁
𝑓(𝑡) − 𝛾

)︁]︁
≥ 0

}︁
for almost every 𝑡 ∈ [𝑎, 𝑏] and

∆[𝑎,𝑏] (𝛾,Γ) :=
{︁
𝑓 : [𝑎, 𝑏] → C

⃒⃒⃒ ⃒⃒⃒⃒
𝑓(𝑡) − 𝛾 + Γ

2

⃒⃒⃒⃒
≤ 1

2
|Γ − 𝛾|

}︁
for a. e. 𝑡 ∈ [𝑎, 𝑏]

Also, we shall give the following lemma so as to prove the next in-
equality.

Lemma 2. [14] For any 𝛾,Γ ∈ C, 𝛾 ̸= Γ, the sets 𝑈 [𝑎,𝑏] (𝛾,Γ) and
∆[𝑎,𝑏] (𝛾,Γ) are nonempty, convex, and closed convex sets and

𝑈 [𝑎,] (𝛾,Γ) = ∆[𝑎,𝑏] (𝛾,Γ) .

Theorem 4. Let 𝑓 : [𝑎, 𝑏] → C be an 𝑛−time differentiable function on
(𝑎, 𝑏) and 𝑥 ∈

[︀
𝑎, 𝑎+𝑏

2

]︀
. If there exists 𝛾𝑖,Γ𝑖 ∈ C with 𝛾𝑖 ̸= Γ𝑖, 𝑖 = 1, 2, 3,

such that

𝑓 (𝑛) ∈ ∆[𝑎,𝑥] (𝛾1,Γ1) ∩ ∆[𝑥,𝑎+𝑏−𝑥] (𝛾2,Γ2) ∩ ∆[𝑎+𝑏−𝑥,𝑏] (𝛾3,Γ3) , (5)

then we have the inequality⃒⃒⃒⃒
⃒𝑆(𝑓 : 𝑛, 𝑥) − [1 + (−1)𝑛]

𝛾2(𝑥) + Γ2(𝑥)

2(𝑛 + 1)!

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

−

−
[︂
𝛾1(𝑥) + (−1)𝑛𝛾3(𝑥) + Γ1(𝑥) + (−1)𝑛Γ3(𝑥)

2

]︂
(𝑥− 𝑎)𝑛+1

(𝑛 + 1)!
+
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+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ ≤ 𝜀1 + 𝜀3

2

(𝑥− 𝑎)𝑛+1

(𝑛 + 1) !
+

𝜀2
(𝑛 + 1) !

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

(6)

where 𝜀1 = |Γ1𝑡(𝑥) − 𝛾1(𝑥)| , 𝜀2 = |Γ2(𝑥) − 𝛾2(𝑥)| , 𝜀3 = |Γ3(𝑥) − 𝛾3(𝑥)| .

Proof. If we take absolute value of both left- and right-hand side of (3) for

𝜆1(𝑥) =
𝛾1(𝑥) + Γ1(𝑥)

2
, 𝜆2(𝑥) =

𝛾2(𝑥) + Γ2(𝑥)

2
, 𝜆3(𝑥) =

𝛾3(𝑥) + Γ3(𝑥)

2
,

we get the inequality⃒⃒⃒⃒
⃒𝑆(𝑓 : 𝑛, 𝑥) − [1 + (−1)𝑛]

𝛾2(𝑥) + Γ2(𝑥)

2(𝑛 + 1)!

(︂
𝑎 + 𝑏

2
− 𝑥

)︂𝑛+1

−

−
[︂
𝛾1 (𝑥) + (−1)𝑛 𝛾3 (𝑥) + Γ1 (𝑥) + (−1)𝑛 Γ3 (𝑥)

2

]︂
(𝑥− 𝑎)𝑛+1

(𝑛 + 1)!
+

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ ≤

𝑥∫︁
𝑎

(𝑡− 𝑎)𝑛

𝑛!

⃒⃒⃒⃒
𝑓 (𝑛)(𝑡) − 𝛾1 (𝑥) + Γ1 (𝑥)

2

⃒⃒⃒⃒
𝑑𝑡+

+

𝑎+𝑏−𝑥∫︁
𝑥

1

𝑛!

⃒⃒⃒⃒
𝑡− 𝑎 + 𝑏

2

⃒⃒⃒⃒𝑛 ⃒⃒⃒⃒
𝑓 (𝑛)(𝑡) − 𝛾2 (𝑥) + Γ2 (𝑥)

2

⃒⃒⃒⃒
𝑑𝑡+

+

𝑏∫︁
𝑎+𝑏−𝑥

(𝑏− 𝑡)𝑛

𝑛!

⃒⃒⃒⃒
𝑓 (𝑛)(𝑡) − 𝛾3 (𝑥) + Γ3 (𝑥)

2

⃒⃒⃒⃒
𝑑𝑡.

Utilizing condition (5), on account of the definition of ∆[𝑎,𝑏] (𝛾,Γ), we write
the inequality

𝑥∫︁
𝑎

(𝑡−𝑎)𝑛

𝑛!

⃒⃒⃒⃒
𝑓 (𝑛)(𝑡)− 𝛾1(𝑥) + Γ1(𝑥)

2

⃒⃒⃒⃒
𝑑𝑡 ≤ 1

2
|Γ1(𝑥)−𝛾1(𝑥)|

𝑥∫︁
𝑎

(𝑡−𝑎)𝑛

𝑛!
𝑑𝑡 =

=
1

2
|Γ1(𝑥) − 𝛾1(𝑥)| (𝑥− 𝑎)𝑛+1

(𝑛 + 1)!
.

Similarly, the results of the other integrals can also be obtained. Thus,
the proof is completed. �

Corollary 1. To get the following inequalities, we use:
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- the Hölder inequality

𝑚𝑛 + 𝑝𝑞 ≤ (𝑚𝛼 + 𝑝𝛼)
1
𝛼
(︀
𝑛𝛽 + 𝑞𝛽

)︀ 1
𝛽 ,

where 𝑚,𝑛, 𝑝, 𝑞 ≥ 0 and 𝛼 > 1 with 1
𝛼

+ 1
𝛽

= 1;

- the identity

max {𝑋, 𝑌 } =
𝑋 + 𝑌

2
+

⃒⃒⃒⃒
𝑋 − 𝑌

2

⃒⃒⃒⃒
;

- the maximum property of max {𝑎𝑛, 𝑏𝑛} = (max {𝑎, 𝑏})𝑛 for 𝑎, 𝑏 > 0
and 𝑛 ∈ N in the left-hand side of inequality (6).

The obtained inequalities are⃒⃒⃒⃒
𝑆(𝑓 : 𝑛, 𝑥) − [1 + (−1)𝑛]

𝛾2(𝑥) + Γ2(𝑥)

2(𝑛 + 1)!

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

−

−
[︁𝛾1(𝑥)+(−1)𝑛𝛾3(𝑥)+Γ1(𝑥)+(−1)𝑛Γ3(𝑥)

2

]︁(𝑥−𝑎)𝑛+1

(𝑛+1)!
+(−1)𝑛

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(𝑛 + 1)!

[︁
(𝑥− 𝑎)𝑛+1 +

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1]︁
max

{︁𝜀1 + 𝜀3
2

, 𝜀2

}︁
,

1

𝑡(𝑛 + 1)!

[︂
(𝑥− 𝑎)(𝑛+1)𝑝 +

(︁𝑎 + 𝑏

2
− 𝑥

)︁(𝑛+1)𝑝
]︂1
𝑝 [︁(︁𝜀1 + 𝜀3

2

)︁𝑞

+ 𝜀𝑞2

]︁1
𝑞

for 𝑝 > 1, 1
𝑝

+ 1
𝑞

= 1,

1

(𝑛 + 1)!

[︁𝑏− 𝑎

4
+ |𝑥− 3𝑎 + 𝑏

4
|
]︁𝑛+1[︁𝜀1 + 𝜀3

2
+ 𝜀2

]︁
,

where 𝜀1 = |Γ1 (𝑥) − 𝛾1 (𝑥)| , 𝜀2 = |Γ2 (𝑥) − 𝛾2 (𝑥)| , 𝜀3 = |Γ3 (𝑥) − 𝛾3 (𝑥)| .

Remark 1. Let 𝑓 and 𝑥 be defined as in Theorem 4. If there exists
𝛾𝑖,Γ𝑖 ∈ C with 𝛾𝑖 ̸= Γ𝑖, 𝑖 = 1, 2, such that

𝑓 (𝑛) ∈ ∆[𝑎,𝑥] (𝛾1,Γ1) ∩ ∆[𝑥,𝑎+𝑏−𝑥] (𝛾2,Γ2) ∩ ∆[𝑎+𝑏−𝑥,𝑏] (𝛾1,Γ1) ,

then we have⃒⃒⃒
𝑆(𝑓 : 𝑛, 𝑥) − [1 + (−1)𝑛]

𝛾2(𝑥) + Γ2(𝑥)

2(𝑛 + 1)!

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

−
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− [1 + (−1)𝑛] [𝛾1(𝑥) + Γ1(𝑥)]

2

(𝑥− 𝑎)𝑛+1

(𝑛 + 1) !
+ (−1)𝑛

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡
⃒⃒⃒
≤

≤ 1

(𝑛 + 1) !

[︁
𝜀1(𝑥− 𝑎)𝑛+1 + 𝜀2

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1]︁
(7)

where 𝜀1 = |Γ1 (𝑥) − 𝛾1 (𝑥)| and 𝜀2 = |Γ2 (𝑥) − 𝛾2 (𝑥)| . Additionally, if
there exists 𝛾1,Γ1 ∈ C with 𝛾1 ̸= Γ1 such that 𝑓 (𝑛) ∈ ∆[𝑎,𝑏] (𝛾1,Γ1) , then
we have the conclusion

⃒⃒⃒
𝑆(𝑓 : 𝑛, 𝑥) + (−1)𝑛

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡−

− [1 + (−1)𝑛] [𝛾1(𝑥) + Γ1(𝑥)]

2 (𝑛 + 1) !

[︁(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

+ (𝑥− 𝑎)𝑛+1
]︁⃒⃒⃒

≤

≤ |Γ1 (𝑥) − 𝛾1 (𝑥)|
(𝑛 + 1) !

[︁(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

+ (𝑥− 𝑎)𝑛+1
]︁
. (8)

Remark 2. If we select 𝑥 = 𝑎 in inequality (6), we have

⃒⃒⃒⃒
⃒
𝑛−1∑︁
𝑘=0

(−1)𝑛+1
[︁
𝑓 (𝑘) (𝑏) + (−1)𝑘 𝑓 (𝑘) (𝑎)

]︁
(𝑘 + 1) !

[︁
(−1)𝑘

(︁𝑏− 𝑎

2

)︁𝑘+1]︁
−

− [1 + (−1)𝑛]
𝛾2(𝑥) + Γ2(𝑥)

2(𝑛 + 1)!

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ ≤

≤ |Γ2 (𝑥) − 𝛾2 (𝑥)|
(𝑛 + 1) !

(︁𝑏− 𝑎

2

)︁𝑛+1

.

Remark 3. If we take 𝑥 =
𝑎 + 𝑏

2
in the inequality (6), then one concludes

the inequality⃒⃒⃒⃒
⃒
𝑛−1∑︁
𝑘=0

(−1)𝑛+1 𝑓 (𝑘)(𝑎+𝑏
2

)[1 + (−1)𝑘]

(𝑘 + 1)!

(︁𝑏− 𝑎

2

)︁𝑘+1

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡−

−
[︂
𝛾1 (𝑥) + (−1)𝑛 𝛾3 (𝑥) + Γ1 (𝑥) + (−1)𝑛 Γ3 (𝑥)

2

]︂
(𝑏− 𝑎)𝑛+1

2𝑛+1 (𝑛 + 1) !

⃒⃒⃒⃒
⃒ ≤
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≤ |Γ1 (𝑥) − 𝛾1 (𝑥)| + |Γ3 (𝑥) − 𝛾3 (𝑥)|
2 (𝑛 + 1) !

(︂
𝑏− 𝑎

2

)︂𝑛+1

.

Also, should we use the condition of the result (7) in this inequality, then
we can find a new inequality.

Remark 4. Substitution of 𝑥 =
3𝑎 + 𝑏

4
in (6) gives

⃒⃒⃒⃒
⃒⃒𝑛−1∑︁
𝑘=0

(−1)𝑛+1 [︀1 + (−1)𝑘
]︀ [︁

𝑓 (𝑘)
(︀
𝑎+3𝑏
4

)︀
+ (−1)𝑘 𝑓 (𝑘)

(︀
3𝑎+𝑏
4

)︀]︁
(𝑏− 𝑎)𝑘+1

4𝑘+1 (𝑘 + 1) !
−

− [1 + (−1)𝑛]
𝛾2 (𝑥) + Γ2 (𝑥)

2 (𝑛 + 1) !

(︂
𝑏− 𝑎

4

)︂𝑛+1

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡−

−
[︂
𝛾1 (𝑥) + (−1)𝑛 𝛾3 (𝑥) + Γ1 (𝑥) + (−1)𝑛 Γ3 (𝑥)

2

]︂
(𝑏− 𝑎)𝑛+1

4𝑛+1 (𝑛 + 1) !

⃒⃒⃒⃒
⃒ ≤

≤ 1

(𝑛 + 1) !

(︂
𝑏− 𝑎

4

)︂𝑛+1 [︂
𝜀1 + 𝜀3

2
+ 𝜀2

]︂
where 𝜀1 = |Γ1 (𝑥) − 𝛾1 (𝑥)| , 𝜀2 = |Γ2 (𝑥) − 𝛾2 (𝑥)| and 𝜀3 = |Γ3 (𝑥) − 𝛾3 (𝑥)| .
What is more, applying the condition of the result (8) to this inequality,
a new inequality can be found.

In addition to these results, one can deduce some inequalities, taking
𝑛 = 1 in inequality (6) or the other results related to (6); these inequalities
were published by Dragomir [15]. Furthermore, if we take 𝑛 = 2 in (6)
or the other results connected to (6), then we obtain some inequalities
presented in [23] that is published by Sarikaya et. al.

3. The case when 𝑓 (𝑛) is of Bounded Variation. We begin
with the definition of bounded-variation functions and the concept of total
variation, which is used throughout this section.

Definition 1. Let 𝑃 : 𝑎 = 𝑥0 < 𝑥1 < . . . < 𝑥𝑛 = 𝑏 be any partition of
[𝑎, 𝑏] and let ∆𝑓(𝑥𝑖) = 𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖); then 𝑓 is said to be of bounded
variation, if the sum

𝑚∑︁
𝑖=1

|∆𝑓(𝑥𝑖)|

is bounded for all such partitions.
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Definition 2. Let 𝑓 be of bounded variation on [𝑎, 𝑏], and
∑︀

∆𝑓 (𝑃 )

denote the sum
𝑛∑︀

𝑖=1

|∆𝑓(𝑥𝑖)| corresponding to the partition 𝑃 of [𝑎, 𝑏].

The number
𝑏⋁︁
𝑎

(𝑓) := sup
{︁∑︁

∆𝑓 (𝑃 ) : 𝑃 ∈ P([𝑎, 𝑏])
}︁
,

is called the total variation of 𝑓 on [𝑎, 𝑏]. Here P([𝑎, 𝑏]) denotes the family
of partitions of [𝑎, 𝑏].

Now, a perturbed inequality of the Ostrowski type for functions whose
high-order derivatives are of bounded variation, are established in the
following theorem.

Theorem 5. Let 𝑓 : 𝐼 → C be an 𝑛 time differentiable function on 𝐼∘

and [𝑎, 𝑏] ⊂ 𝐼∘. If the 𝑛-th derivative 𝑓 (𝑛) is of bounded variation on [𝑎, 𝑏],
then we have⃒⃒⃒⃒

𝑆(𝑓 : 𝑛, 𝑥) + (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡−
[︀
𝑓 (𝑛)(𝑎) + (−1)𝑛 𝑓 (𝑛)(𝑏)

]︀ (𝑥− 𝑎)𝑛+1

(𝑛 + 1) !
−

− [1 + (−1)𝑛]
𝑓 (𝑛)(𝑥) + 𝑓 (𝑛)(𝑎 + 𝑏− 𝑥)

2 (𝑛 + 1) !

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1
⃒⃒⃒⃒
≤

≤ (𝑥− 𝑎)𝑛+1

𝑡(𝑛 + 1)!

[︂ 𝑥⋁︁
𝑎

(𝑓 (𝑛))+
𝑏⋁︁

𝑎+𝑏−𝑥

(𝑓 (𝑛))

]︂
+

+
1

(𝑛 + 1)!

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1
𝑎+𝑏−𝑥⋁︁

𝑥

(𝑓 (𝑛)) (9)

for any 𝑥 ∈
[︀
𝑎, 𝑎+𝑏

2

]︀
.

Proof. Writing 𝑓 (𝑛)(𝑎), (𝑓 (𝑛)(𝑥) + 𝑓 (𝑛)(𝑎+ 𝑏− 𝑥))/2, 𝑓 (𝑛)(𝑏) instead of 𝜆1(𝑥),
𝜆2(𝑥), 𝜆3(𝑥) in equation (3) respectively, then taking modulus of this
equality, we find that⃒⃒⃒⃒
⃒𝑆(𝑓 : 𝑛, 𝑥) + (−1)𝑛

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡−
[︀
𝑓 (𝑛)(𝑎) + (−1)𝑛𝑓 (𝑛)(𝑏)

]︀ (𝑥− 𝑎)𝑛+1

(𝑛 + 1) !
−

− [1 + (−1)𝑛]
𝑓 (𝑛)(𝑥) + 𝑓 (𝑛)(𝑎 + 𝑏− 𝑥)

2 (𝑛 + 1) !

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1

⃒⃒⃒⃒
⃒ ≤
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≤
𝑥∫︁

𝑎

(𝑡− 𝑎)𝑛

𝑛!

⃒⃒
𝑓 (𝑛)(𝑡) − 𝑓 (𝑛)(𝑎)

⃒⃒
𝑑𝑡+

+

𝑏∫︁
𝑎+𝑏−𝑥

(𝑏− 𝑡)𝑛

𝑛!

⃒⃒
𝑓 (𝑛)(𝑡) − 𝑓 (𝑛)(𝑏)

⃒⃒
𝑑𝑡+

+

𝑎+𝑏−𝑥∫︁
𝑥

1

𝑛!

⃒⃒⃒
𝑡− 𝑎 + 𝑏

2

⃒⃒⃒𝑛 ⃒⃒⃒
𝑓 (𝑛)(𝑡) − 𝑓 (𝑛)(𝑥) + 𝑓 (𝑛)(𝑎 + 𝑏− 𝑥)

2

⃒⃒⃒
𝑑𝑡.

Noting that 𝑓 (𝑛) : 𝐼∘ → C is of bounded variation on [𝑎, 𝑥], we get⃒⃒
𝑓 (𝑛)(𝑡) − 𝑓 (𝑛)(𝑎)

⃒⃒
≤

𝑥⋁︁
𝑎

(︀
𝑓 (𝑛)

)︀
and observe that

𝑥∫︁
𝑎

(𝑡− 𝑎)𝑛

𝑛!
𝑑𝑡 =

(𝑥− 𝑎)𝑛+1

(𝑛 + 1) !
.

The other integrals are also examined by noting that 𝑓 (𝑛) : 𝐼∘ → C is
of bounded variation on [𝑥, 𝑎 + 𝑏− 𝑥] and [𝑎 + 𝑏− 𝑥, 𝑏]: we can find the
result (9), which finishes the proof. �

Remark 5. Suppose that all assumptions of Theorem 5 hold. If we take
𝑥 = 𝑎 in the inequality given this theorem, we have⃒⃒⃒⃒
⃒
𝑛−1∑︁
𝑘=0

(−1)𝑛+1
[︀
𝑓 (𝑘)(𝑏) + (−1)𝑘𝑓 (𝑘)(𝑎)

]︀
(𝑘 + 1) !

[︁
(−1)𝑘

(︁𝑏− 𝑎

2

)︁𝑘+1]︁
−

− [1 + (−1)𝑛]
𝑓 (𝑛)(𝑎) + 𝑓 (𝑛)(𝑎 + 𝑏− 𝑥)

2 (𝑛 + 1) !

(︁𝑏− 𝑎

2

)︁𝑛+1

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ ≤

≤ 1

(𝑛 + 1) !

(︁𝑎 + 𝑏

2
− 𝑥

)︁𝑛+1
𝑏⋁︁
𝑎

(︀
𝑓 (𝑛)

)︀
.

In addition, if we choose 𝑥 = 𝑎+𝑏
2
, we get the midpoint inequality⃒⃒⃒⃒

⃒
𝑛−1∑︁
𝑘=0

(−1)𝑛+1𝑓 (𝑘)
(︀
𝑎+𝑏
2

)︀ [︁
1 + (−1)𝑘

]︁
(𝑘 + 1) !

(︁𝑏− 𝑎

2

)︁𝑘+1

−
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−
[︀
𝑓 (𝑛)(𝑎) + (−1)𝑛𝑓 (𝑛)(𝑏)

]︀ (𝑏− 𝑎)𝑛+1

2𝑛+1(𝑛 + 1)!
+ −1)𝑛

𝑏∫︁
𝑎

𝑓(𝑡)𝑑𝑡

⃒⃒⃒⃒
⃒ ≤

≤ (𝑏− 𝑎)𝑛+1

2𝑛+1 (𝑛 + 1) !

𝑏⋁︁
𝑎

(︀
𝑓 (𝑛)

)︀
.

Finally, should we take 𝑥 =
3𝑎 + 𝑏

4
, we have

⃒⃒⃒⃒
⃒
𝑛−1∑︁
𝑘=0

(−1)𝑛+1
[︀
1 + (−1)𝑘

]︀ [︁
𝑓 (𝑘)

(︀
𝑎+3𝑏
4

)︀
+ (−1)𝑘𝑓 (𝑘)

(︀
3𝑎+𝑏
4

)︀ ]︁
(𝑏− 𝑎)𝑘+1

4𝑘+1(𝑘 + 1)!
+

+ (−1)𝑛
𝑏∫︁

𝑎

𝑓(𝑡)𝑑𝑡−
[︀
𝑓 (𝑛)(𝑎) + (−1)𝑛 𝑓 (𝑛)(𝑏)

]︀ (𝑏− 𝑎)𝑛+1

4𝑛+1 (𝑛 + 1) !
−

− [1 + (−1)𝑛]
𝑓 (𝑛)(3𝑎+𝑏

4
) + 𝑓 (𝑛)(𝑎+3𝑏

4
)

2 (𝑛 + 1) !

(︁𝑏− 𝑎

4

)︁𝑛+1

⃒⃒⃒⃒
⃒ ≤

≤ 1

(𝑛 + 1)!

(︁𝑏− 𝑎

4

)︁𝑛+1
𝑏⋁︁
𝑎

𝑡(𝑓 (𝑛)).

Besides the results that are presented in this section, taking 𝑛 = 1 in
the inequality (9) or the other results pertaining to (6), we obtain some
inequalities given in [15] by Dragomir. What is more, should we take
𝑛 = 2 in expression (6) or the other results interested in (6), we can find
some inequalities presented in [23] by Sarikaya et. al.
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